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ABSTRACT

This report describes basic studies on tactile perception and com-

munication. There are five main sections (II to VI) describing different

psychological experiments and seven appendices describing instrumenta-

tion and equipment for these experiments.

In Section II, experimental sessions are described in which words,

sentences, and paragraphs were transmitted to subjects by a tactile

display. Arrays of airjet and piezoelectric bimorph stimulators were

programmed so that alphabetical patterns moved across these tactile dis-

plays in much the same manner as certain news display boards. Subjects

were able to read t_ctually from these displays at-a rate of 20 words

per minute after less than 20 hours of training, and one subject reached

30 words per minute in 45 hours of training. Airjet and bimorph stimu-

lators are compared, the effect of varying the size of the stimulator

array is studied, and the effect of type font is discussed.

Sessions in which a specially designed tactile alphabet is developed

are discussed in Section Ill. Factors such as learnability, edge ef-

fects, letter packing, and number of fingers used are considered. Tac-

tually naive subjects were able to identify these letters correctly at

a rate of about two random letters a second after 25 hours of practice.

In Section IV, studies of two-dimensional compensatory tracking with

a continuous visual display, a discrete visual display, and a discrete

tactile display are described. A series of experiments were performed

with these displays in which display gain and command signal bandwidth

were varied. For various values of these parameters, mean-squared error

was calculated as a function of command signal delay. Performance with

the tactile and discrete visual displays was found to be approximately

equal. Minimum mean-squared error with both discrete displays was

generally poorer than with the continuous visual display except under
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low commandsignal bandwidth and high display gain conditions, where "

minimummean-squarederror was almost equal for all three displays.

A series of phenomenological observations is described in Section V.

Apparent position, apparent motion, and illusions are some of the effects

commented on.

Finally, in Section VI three series of quantitative studies are re-

ported. The first is a study of the effect of deliberate stimulus pat-

tern "jitter" on performance. It is found that a small circular transla-

tion of the stimulator array can improve performance for letter trans-

mission, and an empirical relation among performance, frequency of stimu-

lus pattern rotation, and stimulus presentation time is determined. Next,

a study concerned with methods of tactually transmitting the magnitude

of a single analog parameter is described. Information analyses are

used to compare various presentation techniques. Third, the theory of

signal detection is applied to a study of the humanlobserver's ability

to discriminate among different loci of tactual stimulation.

In the appendices, details of the construction of airjet and piezo-

electric tactile stimulators are given, the digital-computer-controlled

instrumentation system and associated computer programs are described,

and equipment for tactile tracking is described.
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GLOSSARY OF TERMS

Airjet Array 1

This is the original airjet array, based on the use of mechanical

flapper valves. The details of design and performance are dis-

cussed in Appendix I.

Airjet Array 2

This is a second version of airjet array based on the use of mag-

netically driven steel balls which serve as valves. The main pur-

pose of this design was to reduce the amount of air leakage when

the valve was closed (the flapper valves were marginal in this

respect) and also to enable operation of the jets at a higher

frequency.

Bimorph Array

This is an array of elements, each consisting of a sandwich of two

layers of oppositely polarized electrostrictive material that bends

upon application of a voltage. The same drive circuits can be

used for the airjet and bimorph arrays. In one case the electrical

signals operate valves to control air flow, and in the second the

electrical signals control mechanical vibration. Because the

bimorph array must be brought into contact with the skin, it is

more difficult to use over a wide area of skin than the airjet array.

Synchronous-Asynchronous Drive Systems for the Stimulator Arrays

It is found that good sensation is achieved with a frequency of

stimulation in the i00- to 200-cps range. Thus, when a stimulator

is said to be energized, what is meant is that the stimulator

(airjet or bimorph) oscillates at a certain frequency for as long

as the stimulator is left "on." Initially, the 12-times-8, or 96,

oscillator circuits were unsynchronized, although they were all

xvii



adjusted to oscillate at about the samefrequency. With some

modification it was possible to synchronize all of the oscillators.

FramePresentation
In this modethe entire pattern is stored in the interface equip-

ment, and then all jets are turned on simultaneously.

Times Square Pattern Scan l
In Times Square display modea pattern is introduced on one edge

of the display and continues to movealong the display a frame at

a time until the pattern runs off the other edge. The Times

Square modeis then essentially a series of frame presentations

with the pattern shifted appropriately between frames. In the

Times Square i modethe 8-by-12 array is oriented to be eight rows

high with the pattern progressing along the 12 columns.

Times Square Pattern Scan 2
In this modethe 8-by-12 array is turned 90 degrees so that the

display is 12 rows high and the pattern progresses along the
8 columns.

Single and Double Jump
This refers to the manner in which the pattern progresses in either

Times-Squaremode. With single jump, the pattern movesone column

at a time. With double jump the pattern moves two columns with

each successive presentation.

Masking
This refers to a programmingtechnique in which the effective width

of the array can be controlled by entry of a key number in the pro-
gram. With a visual Times Square display, masking would correspond

to controlling the width of the window through which viewing takes

place.

Line Scan

In this modeof presentation a given pattern is displayed a single

line at a time from top to bottom. There is further facility to

xviii



control the number of lines displayed at any instant. Thus, as each

new line is energized, a row an arbitrary number of positions n

back can be erased, or de-energized. For n = i, only a single line

at a time is presented, the previous line being erased as the next

line is energized.

Point Scan

This routine displays the pattern one point at a time according to

the following sequence (l,1), (2,1), ..., (7,1), (8,1) then (1,2),

etc. The first number indicates the row and the second number indi-

cates the column of the pattern matrix.

Start-Stop and Backup Control

These refer to switches which the subject can use to stop or start

the display program, or to cause the display program to back up a

number of letters in the sequence.

Space Bar

In a sequence of letters, a space bar is a blank field equal in

width and presentation time to a letter.

Block Letters

These are relatively conventional block letters without serifs.

Typewriter Font

These are letters derived from quantizing standard pica typewriter

letters.

Braille I Symbols

These are "dot" stimuli on a 2-by-3 matrix corresponding to the

Braille code for the letters of the alphabet.

Specially Designed Alphabet

This is a set of alphabetic shapes designed for tactual perception

and to resemble conventional letters as much as possible.

xix



DC Display Gain

This is the ratio of output to input for the tracking display.

Normalized Display Gain

This gain is the ratio of the maximum possible command signal for

a given command signal spectrum, to the full scale signal on the

tracking display.

Command Signal Bandwidth

In some of the tracking experiments, the command signal was fil-

tered by a simple lag whose corner frequency defines the command

signal bandwidth.

Apparent Motion

This phenomenon is observed when two stimulators are activated in

time sequence, and the perception is as though one stimulator moved

from the position of the first to the position of the second.

Apparent Position

This phenomenon is observed when two stimulators are activated

simultaneously and the perception is as though one stimulator were

activated at some intermediate position.

Stimulator Array Movement or "Jitter"

In this mode, the entire array of airjet nozzles is circularly

translated at a fixed rpm and amplitude.
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I INTRODUCTION

Apart from its use by the visually handicapped, the tactile system
has not generally received serious consideration as a method of communi-

cation. However, with the advent of complex man-machinesystems, it is
becoming more important to study all potential methods of communication

between manand his hardware systems. In this regard, the tactile sys-

tem deserves serious attention, for the sense of touch is certainly

capable of receiving information at high rates, as evidenced by the deaf-

blind, who by placing their fingers on the lips, jaw, and throat of a
speaker can receive live speech in real time.

The use of a high'speed computer to generate and control rapidly

changing tactile patterns has opened up new areas in tactile research,
research that will be important for the development of tactile com-

munication systems. Hence, the development of a computer-centered ex-

perimental facility was an integral part of the project reported herein.

The status of this facility is summarizedin the appendices.

The results of the tactile perception studies performed in connec-

tion with the experimental facility are discussed in the body of this

report. To provide a background for these studies, a brief summaryof
someprevious research is given below.

A. Background

There has, of course, always been deep interest in the tactile sense,

since in almost every activity the tactile receptors in our skin serve to

/ /

inform us of the world around us. Tabori (1962) and Revesz (1958) have

compiled interesting information about the physical aspects of touch,

especially about the function of the hand, and Burton and Kantor (1964)

have discussed some modern research on the emotional factors involved in

touch. As for experiment.al research, it has been broad and diverse. The

following is a very brief summary of the areas of research relevant to

this report, and a reference or two has been given for each area of study,

i



though it should be borne in mind that the amount of material available
on each area is extensive.

The tactual system, quite simply, consists of receptors in the skin,

innervated by peripheral nerves from the dorsal roots of the spinal cord.
Thesefibers form relatively distinct tracts in the spinal cord, synapsing

in the midbrain and in the thalamus, with subsequent fanning out to vari-

ous regions of the cortex. Montagna (1956) discusses the structure of
the skin and the anatomy of the neural endings. There is extensive contro-

versy over the nature of the nerve endings. Von Frey's ideas of "specific

nerve energies," implying distinct nerve endings for each modality, such

as touch, pain, hot, cold, pressure, and tickle, cannot be confirmed.

Somecommentsfrom Weddell (1961, page 16) may convey the jist of the

controversy.

"In the hairy skin of man (apart from the back of the
fingers) I soon found that only (and this has been con-
firmed many times now) two morphologically distinct types
of nerve terminals could be found under the light microscope;
those ending in relation to hairs and so-called 'free' nerve
endings, which were present at all levels in the skin...The
'free' nerve endings are diffuse, widespread arborizations,

arising sometimes from large myelinated fibres, but more
usually from fine myelinated and non-myelinated axons, leav-
ing the cutaneous plexus. Hairy skin covers well over
90 percent of the body surface. Even parts that do not ap-
pear to be hairy contain numerousfine down-like hairs which
are often lavishly innervated, for example, the skin cover-
ing the ears .... Wherethen are Krause end-bulbs and other
complex nerve endings end-formations to be found? Surpris-
ingly, they are only found in exposed mucousmembranesand
in the hairless skin of the hands and feet. Meissner cor-
puscles in the hairless skin of the hands and feet take the
place of hairs in hairy skin. Someof the end-organs in
exposedmucousmembranesundoubtedly transduce tactile stimuli,
others may transduce thermal stimuli, but this is as yet un-
known. Despite this, reports of touch, warmth, cold, and
pain can all be evoked with relative ease from the hairy
skin of the face, the mucousmembraneof the lip and the
skin covering the fingers and hands. The only terminals
commonto all types of skin are the so-called "free" nerve-
endings and one is forced to the conclusion that in hairy
skin, at least, it is these endings which must serve the
modalities of warmth, cold and pain .... "

2



'From a somewhatdifferent point of view, Mountcastle (1961, page 88)
c omment s :

"...and I know he (Weddell) agrees with me that even

though the peripheral endings of sensory fibers inner-

vating the hairy skin appear similar when examined in

stained sections through the light microscope, we must

not conclude that they are all functionally equivalent ....

The large majority of both myelinated and unmyelinated

fibers are modality specific...Most of us have ideas of

our own, then, concerning the degree of specificity of

first order afferent fibers, ideas prejudiced by our own

experiments, perhaps. To me a very important point is

that in the central reaches of the somatic system spe-

cificity is exquisitely preserved--and this could hardly

occur if this lemniscal component (commented on further

below) were fed by first order fibers equally sensitive
tr

to all forms of inpinging energy.

Wyburn (1960, chapter 3) schematically summarizes the neuroanatomy

of the tactual system, tracing the tracts through the spinal cord to the

cortex. Less distinct than the ascending and descending tracts through

the spinal cord are the systems of collaterals and synaptic connections

which occur at every vertical level. For one discussion of these collat-

eral systems see Wall (1960). Because of the vast expanse of the tactual

system one does not encounter the tactual equivalent of complete blindness

or deafness, though of course there can be specific areas of tactual loss

through specific damage. There appear to be two major systems of taction

which provide safety factors against complete tactual loss. These two

systems are discussed by Mountcastle (1961) in the following selections

from the referenced work:

"That the two major afferent systems concerned with

somatic sensibility are not functional duplicates is a

fact long established in clinical neurology .... I shall

draw data firstly from experiments on what I shall call

the lemniscal system .... This system preserves in a most

specific way those properties of the stimulus which are

subsumed under the terms of local sign and modality

specificity. It is organized in a powerful way to ac-

centuate ground contrast and to follow rapid transient

alterations in the locale or the temporal pattern of

the peripheral stimulus, qualities which I suppose are

described as adequately by the word epicritic as by the



one I have chosen. The lemniscal system consists mini-

mally of a portion of the myelineated dorsal root affer-

ants, the dorsal column nuclei, the thalamic ventrobasal

complex and the postcentral gyrus." (p. 68).

"It (the lemniscal system) is a system of precise

anatomical connections, although over and above its

anatomical speclficity--even here there is considerable

dlvergence--there are physiological attributes which tune

it for discriminatory functions as precise as any known

in nature. Among these attributes are temporal facilita-

tion and afferent inhibition, and doubtless there are

others yet to be discovered." (p. 81).

"The other...system I shall term the anterolateral.

It is composed of dorsal root fibers, dorsal horn cells

and their upwardly projecting fibers in the anterolateral

columns of the cord, the posterior nuclear complex of the

thalamus, and the second somatic area of the cortex. The

functional properties of this system are on almost every

count different from those of the lemniscal. Within it

there is spatial convergence to such a degree that modality

specificity is lost." (p. 68).

"Hunt and Kuno found them to be activated from rather

large receptive fields, which often include more than one

limb and which may be bilateral in distribution. Although

the majority are sensitive to mechanical stimulation of

peripheral tissues, many discharge only when the stimulus

is one injurious to tissue. Lastly, there is certainly

evidence that this system is involved in that afferent

activity which leads to the perception of pain .... There

is evidence of a considerable cross convergence between

the two systems, at both the thalamic and cortical levels."

(p. 81).

Mountcastle (1957) also discusses the organization of the somatic

cortex. He shows data that

"...support an hypothesis of the functional organization of

the cortical area. This is that the neurons which lie in

narrow vertical columns, or cylinders, extending from layer

II to layer VI make up an elementary unit of organization,

for they are activated by stimulation of the same single

class of peripheral receptors, from almost identical recep-

tive fields, at latencies which are not significantly

different for the cells of the various layers." (p. 408).

In addition to the neurophysiological studies, there have been

rather extensive psychophysical studies of taetual perception. These

studies have primarily been limited to the effects produced by a single
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stimulus, or at most a few stimuli, at a time. There have also been ex-

tensive studies on the mapping of the skin according to different modal-

ities, studies which were often accompanied by attempts to correlate

specific sensitivity with the underlying anatomy, in particular, ending

types. Rothman (1954, chapter 5) discusses some of the results of such

studies and comments on warm spots, cold spots, itch spots, and so on.

Other studies have been limited to a single stimulus technique in

an effort to correlate subjective sensation with the many parameters of

/l

stimulation. For example, yon Bekesy carried on extensive tactile vibra-

tion studies simultaneously with audition studies and was very successful

in predicting and proving many auditory phenomena on the basis of analogous

tactile phenomena. Perhaps the best introduction to the extensive liter-

II

ature in this field is von Bekesy's book on hearing (yon _ 'Bekesy, 1960).
IJ

In this work, von Bekesy discusses many phenomena of importance for the

development of systems involving tactual communication, such as (i) spatial

interaction of a pair of adjacent stimulators leading to "apparent posi-

tion" effects and lateral inhibition models; (2) temporal effects relating

to the perception of vibratory pitch, in particular, the sensitivity of

pitch perception to vibratory amplitude; (3) sensitivity to waveshape and

the great difference between click excitation and sinusoidal excitation;

(4) spatial-temporal effects leading to "apparent motion" effects and

"rotating sounds," the latter being strongly analogous to a similar audi-

tory phenomenon; (5) similar effects from a number of different stimula-

tion modes, such as thermal and electrical, in addition to vibratory;

and (6) interaction of modes, e.g., a rotating sensation between a thermal

stimulator and a vibratory stimulator.

The psychophysical experiments noted above involve subjective re-

sponses only. Other studies involve electrical recording of responses,

either by surface electrodes [e.g., Uttall (1959) recorded responses by

placing surface electrodes on the forearms] or by surgically implanted

electrodes. The latter studies have usually been conducted on animals,

although Hensel and Boman (1960) report on one study in which human re-

sponses were recorded by electrodes surgically implanted in the forearm.



Extensive studies using embeddedelectrodes have been madeat the spinal--

cord level (Wall, 1960) and at the central level (Mountcast!e, 1957).

In these studies, recordings are madein response to stimulation at some ,

point of the periphery.

As useful and important as these single-electrode studies are, to

develop more complete models of the tactile system it is also necessary

to study responses to more complex stimulus patterns. However, until

recently, no technological equipment like that used in making sophisti-

cated auditory and visual experiments was developed for tactual study.

The high-speed computer has now provided the meansof making comprehensive,

flexible tactual experiments. Also, electronic technology has now pro-

gressed to the point where it is feasible to place relatively large arrays
of tactile stimulators in a small space.

B. Present Program

A relatively large part of our program to date, especially during

the first year, has been devoted to the development of a tactile research

facility to provide greater ease, flexibility, and reproducibility of

complex spatial-temporal tactile stimulation. With this facility we have

the capability of conducting an extensive psychophysics program based on

complex stimulation patterns rather than on the relatively simple patterns

available with just a few stimulators.

Ideally, to understand the tactual system we have to know all the

parameters of every stimulus pattern to which the system can respond.

However, much of this information would be irrelevant to our goal of

tactile communication. For example, by the time we were able to trans-

mit tactual patterns, we would find that there is a relatively wide range

of amplitudes, just as in vision and audition, over which there is rel-

atively small effect on the data transmission rate. Therefore, we have

felt that it would be unwise to take what might appear to be the most

methodical approach of studying each parameter in turn. (This statement

is not intended to defend the somewhat ad hoc approach we have taken_

but rather to explain it.) Thus, we have conducted experiments in a

number of different areas simultaneously and have altered the approach
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as experimental results dictated. For our present purposes, these ex-

periments will be divided into two broad categories; (i) those concerned

with actual data transmission for communication and control, and (2) those

concerned with more basic psychophysic studies.

The long-range goal of the program can be thought of as the develop-

ment of a functional model for the tactile sense. A comprehensive model

should (I) permit predictions of human information acquisition capabil-

ities to be made with any potential display, (2) describe in terms of

the unknown physiology the information processing that occurs with tac-

t_l_ _"_S and (a__, answer in what ways the tactile modality compares

with other sense modalities. Knowledge of the last would permit us to

perform certain tactile experiments to simulate functions now performed

t!

with other sensory systems. (Thus, yon Bekesy was able to predict cer-

tain features of the auditory system by making certain tactile experi-

ments.) In any case, our choice of experiments has also been influenced

by a desire to obtain information that could be useful in developing

models.

C. Tactile Stimulators

Stimulation of the tactile sense can be accomplished with electri-

cal, mechanical, thermal, and chemical stimuli. For communication, the

most practical methods are probably mechanical and electrical. Although

there has been some recent advance in "painless" electrical stimulation

(Gibson, 1963), this means may be impractical where a large number of

electrical stimulators are required, since each stimulator might have

to be carefully adjusted. Of the mechanical stimulators, airjets give

a strong sensation and, because they are noncontacting, are relatively

easy to position and adjust. Another important advantage of airier

stimulation in a spatial array of stimulators is that relatively uniform

stimulation can be achieved over non-uniform cutaneous surfaces. In his

discussion of cortical responses of neurons related to cutaneous recep-

tors, Mountcastle (1957, page 409) comments:
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"...about 60 percent of all neurons of the cutaneous

group were activated by stimulation of the hairs. Such

units are exquisitely sensitive to bending of the hairs

of the skin--so much so that they are optimally driven

by short weak jets of air delivered against the hairs."

Airjet stimulation of the skin has been used by many investigators.

For example, Allen and Hollenberg (1924) measured the critical frequency

of fusion for air pulses and found that it increased with pressure.

Allen and Weinberg (1925) report that the critical fusion frequency for

airjet stimulation can also be increased somewhat by simultaneously

stimulating a nearby region. Bellows (1936) also measured cutaneous

flicker fusion frequency with airjet stimuli and showed that it decreased

with the duration of stimulation. Most recently, Saslow (1962) investi-

gated thresholds, magnitude scales, and information transmission using

a 3-by-3 matrix of airjets, and Kotovsky and Bliss (1963) have reported

on apparent location, spatial acuity, apparent motion, and temporal

acuity with airjet stimulation.

Stimulators powered by piezoelectric bimorphs have also been used

in our experiments. These are much quieter and consume much less power

than the airier stimulators. The characteristics of piezoelectric

bimorph transducers are described by Lion (1959, page 78), and their use

as tactile stimulators is described in Alonzo (1964). Piezoelectric bi-

morphs have been used by Agalides (1963) for direct stimulation of tactile

receptors isolated from their surrounding tissue. Since the motion pro-

duced is similar to that produced by mechanical transducers, results

similar to those reported by other investigators working on mechanical

stimulation should be expected.

D. Experiments

One reason for the interest in developing techniques of information

transfer via the tactual system is, of course, to provide the blind or

deaf-blind with a substitute for their sensory loss. The availability of

computers has made possible the development of systems in which vast

amounts of data, stored in a computer, are readily available to a blind

8



user via a proper output transducer. In fact, through the development

of a readily usable visual-to-tactual translator, it appears possible

to give the blind access to any written material.

To determine the actual usefulness of such a sensory translation

device, we have used our experimental computer system to generate English

text and have converted this text into tactual output. The results of

studies of this type, using blind subjects, have been very encouraging.

With meaningful text, we have reached relatively quickly a rate of about

30 words per minute. The studies made to date with these blind subjects

are discussed in Section II. _

The alphabet used with the blind subjects, in the experiments noted

above, was simply a version of capital English letters. It was noted

that when using the airjet stimulators, subjects had difficulty with these

letters, which were relatively complex in structure, so that they some-

times sensed only an unstructured blast ofair. It then became apparent

that simply by reducing the structure of the letters, i.e., by reducing

the number of stimulator points, subjects could learn to recognize these

"abstracted" letters with great accuracy and also with considerable speed.

Several sighted subjects have now been trained on this alphabet, and

reading rates of about two random letters a second have been readily

achieved. These results are described in Section III.t However, no

tests were made with contextual material to determine word rates. To

date, the work with sighted subjects using this alphabet has been largely

confined to experiments in modes of presentation.

Experiments have been made to determine the effect of varying the

position of the displayed characters in time in a predetermined way,

namely, by rotating the entire two-dimensional array in a circular trans-

lation mode. The results of these experiments, described in Section VI,t

indicate that a significant improvement in subject performance is obtained

in this way.

* These studies were carried out under a National Institute of Health

grant.

t Supported under Contract AF33(615)-1099.
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Also described in Section VI _ are two other quantitative studies. "

The first explored various methods of tactually presenting the magnitude

of an analog quantity, and an informational analysis was made to compare'

the methods. Anatomical landmarks were found to be a very important

factor in tactile localization, and an information-per-presentation

comparable to single-dimension visual and auditory stimuli was obtained.

In another study, signal detection theory was applied to tactile locali-

l

zation. Values of d (a measure of the ability of an observer to dis-

tinguish between a pair of stimuli) were determined for various distances

between the stimuli.

Preceding these quantitative studies is a discussion of a number of

phenomenological observations(Section Vt).

Another type of information transfer experiment that involves spatial-

temporal responseis tactile tracking. From visual tracking experiments,

many important parameters that describe the human transfer function in

this task have been determined, and it would be useful to determine

whether these parameters are essentially the same with tactile input.

For example, considerable experience has been gained from experiments in

which a subject is asked to move a control stick in accordance with the

movement of a light. It is interesting to consider use of the tactual

system for such control (e.g., for control of a vehicle) when it is de-

sirable to release the visual system for other activity, or when the

visual system cannot function because of, say, very high vibration and

g-stress.

The results of some preliminary comparative studies of this type are

discussed in Section IV. _ It has been found, for example, that the per-

formances of a subject given discrete tactual stimuli and a subject given

discrete visual stimuli are generally similar, though the performance

with both of these discrete displays is poorer than when a continuous

_ Supported under Contract NAS 2-1679.

t See previous page.
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'visual display is used. Such comparative studies should further the

understanding of human responses to a tracking situation and should
#

be useful for determining which functions may be treated as common

and which are specific to a given sensory mode.

Ii



II TACTILE READING OF TEXTUAL MATERIAL

A. Introduction

This section describes experimental sessions in which words, sen-

tences, and paragraphs were transmitted to subjects by tactile means.

The objectives of these experiments were to determine what information

rates are possible with simple tactile coding and to explore the prac-

ticality of some possible applications of this type of display.

In the past, many tactile languages have been developed and used,

primarily for the blind. Farrell (1950) describes the development of

symbol sets such as Moon Type, HaUy's embossed letters, and Braille.

Methods such as these for coding letters of the alphabet into tactile

symbols can be classified as follows:

(I) Codes in which the tactile symbols are exact or modified

copies of their visual counterparts. Embossed letters

and Moon type are examples of this type of code.

(2) Codes in which the tactile symbols bear little or no

relation to the standard printed alphabetic shapes.

Braille is an example of this type of code.

The practical advantages of the first group over the second are

that less learning is required and much simpler equipment can be used

to produce the tactile images from optical alphabetic shapes. From a

research standpoint, the shorter learning time allows information-rate

measurements to be made sooner, and the similarity to visual patterns

permits investigation of the transfer of learned visual images to cor-

responding tactual images.

Studies of the ability of subjects to distinguish static embossed

letters have been conducted by Austin and Sleight (1952) and Dinnerstein

and Wolfe (1962). Austin and Sleight found that 0.5-inch-high embossed

letters of masonite could be recognized in about 3.5 seconds if the sub-

ject were allowed to move his finger over the embossed letters.

Dinnersteln and Wolfe allowed their subjects to explore the letters

only through a narrow slit. They found that S.5-inch-high letters cut
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from chenille could be tactually recognized with about 90-percent ac-

curacy at a rate of about one letter every 3.6 seconds.

Examples of tactile codes not related to alphabetic shapes are

given in the studies of Geldard (1957) and Bliss (1962). Geldard studied

a code that used 5 stimulator locations, 3 intensities of stimulation,

and 3 durations of stimulation to give 45 combinations, 26 of which

represented the letters of the alphabet. He reported that after 16 hours

of training, a subject could receive information at a 35-wpm rate.

Bliss studied a code consisting of passive finger movements similar to

those used in typing. He found that subjects could achieve an informa-

tion rate of 4.5 bits per second _ after 15 hours of training. By com-

parison, Grade II Braille can be read at well over i00 wpm, but a complex

code with 185 English contractions is involved•

The sessions described in this section were almost all devoted to

tactile reading of alphabetic shapes. This special case of tactile com-

munication has an important application as a possible method of giving

the blind access to the printed page. Using the equipment and computer

programs previously developed, we have had the opportunity to investi-

gate this special case under National Institutes of Health sponsorship.

For many years research efforts have been directed toward finding

a means, operable by a blind person, of translating material on a

printed page directly into a form comprehensible without vision. A

novel scheme to produce a dynamically embossed facsimile of ordinary

_ For a random sequence of the 26 letters of the alphabet, in which the

letters are statistically independent and equally probable, each letter

has an information content of log 2 26 = 4.7 bits. Thus, a rate of

4.7 bits per second corresponds to one random letter per second. How-

ever, English text contains considerable redundancy, so that each let-

ter in context may actually transmit only about one bit of information

on the average. Taking this redundancy into account, there is about

a 10-to-i ratio between words per minute and bits per second. Thus,

4.7 bits per second corresponds to about 47 words per minute. Experi-

ments surveyed by Attneave (1959) indicate that well trained subjects

tend to process information at a constant information rate rather than

a constant letter rate when sequential constraints (redundancy) be-

tween letters are varied.



. printing for tactual reading has been reported by Linvill (1964) and

studied further by Alonzo (1964). As in many systems proposed in the

. past, images are translated into a corresponding pattern o£ pins within

an array, which produces a tactile image corresponding to the black-and-

white pattern on the page (see Fig. II-1).

0 0 0 0 0 07

I
0 0 0 0 0 0

I
0 0 0 0 0 0 l

0 0 0 0 0 0 I

0 0 0 0 0 0 I

0 0 0 0 O 0 I

0 0 0 0 0 0 J

I
0 0 0 0 0 0 I

_o oo o oj
(a)

FIELD OF INDEPENDENT,
AXIALLY VIBRATING PINS

(b)

ARRAY OF PHOTOCELLS, EACH OPTICALLY COUPLED
TO A REGION OF THE PRINTED PAGE AND ELECTRICALLY
COUPLED TO ACORRESPONDING PIN OF TACTILE ARRAY

J

(c)

SECTION OF PRINTED PAGE

RA-4719-20

FIG. II-I CONCEPT OF DYNAMIC EMBOSSER

The unique £eature o£ this scheme is the method of operating the

pins by means o£ piezoelectric bimorphs coupled to photocells. Figure II-2

shows how each pin in the array can be operated. When light falls on

the photocell, its resistance decreases (to about 3OK), so that the bi-

morph is essentially shorted out and does not vibrate. When the photo-

cell is dark, its resistance is many megohms, and the bimorph can vibrate.
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FIG. II-2 CIRCUIT ARRANGEMENT OF PHOTOCELL, RESISTOR,
AND LEAD ZlRCONATE REED (BIMORPH)

This extremely simple circuit realized in integrated circuit form

permits the construction of a very simple and compact hand-held device

that contains the photocell and vibrating pin arrays. This device could

be manually scanned over printed text and an enlarged version of the

print sensed tactually. Such a device, if convenient to use, would be

a highly significant aid to certain blind individuals. Other applica-

tions could undoubtedly be found in situations where spatial pattern

perception is needed but vision cannot be used.

Instead of using a simple direct-conversion optical scanner as an

input device, a computer can be used as a primary source of material

and may be practical for other types of applications as well as for the

blind. For example, navigation information in alphanumeral form could

be taken directly from a computer output and transmitted to an astronaut

without the use of visual or auditory channels. In this situation it
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might be appropriate to build the tactile display into the suit or hel-

met (for example, the cheek is a relatively large sensitive surface and

the helmet is a convenient rigid surface on which to mount tactile stimu-

lators). Also, with the computer industry striving to make computer

time less expensive and perhaps available by the simple lifting of a

telephone receiver, it may be that the terminal equipment necessary to

convert control signals from a central computer would be inexpensive

enough to make a central computer facility attractive as a library source

for the blind. This kind of computer control would permit considerable

flexibility in the programming, so that possibilities for perusal,

scanning, and variations in reading rates could be included in the

program.

B. Subject s

The three subjects used in the reading sessions are briefly dis-

cussed below.

$3:

Sll:

S13:

Our initial subject was a 12-year-old girl who is in

the seventh grade at a regular school. She is an

avid Braille reader. Reading sections from an article

in the Saturday Evening Post, she scored 76 words per

minute on a Braille I reading test and 125 words per

minute on a Braille II reading test.

She has been blind since she was about 8 months old

and totally blind since she was about two years old.

This subject was a 16-year-old senior boy from a

regular _igh school. He reads Braille II every day

and can read at about lO0 wpm.

He went blind gradually and could read and see colors

until he was l0 years old. He has had no light per-

ception for three or four years.

This subject was an 18-year-old sophomore girl at

Stanford University. She reads Braille II every day

and has read as fast as 137 words per minute.

She was blind from birth and never had any light

perception.

C. Stimulation Conditions

Two types of tactile stimulation were used in the sessions discussed

in this section. The majority of sessions were conducted with the
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12-by-8 array of piezoelectric bimorph stimulators described in Appendix C.

A few sessions were performed with one of the two arrays of airjet stimu-

lators described in Appendices A and B. Airjet stimulators 1 (described.

in Appendix A) were initially used because construction of the bimorph

array had not been completed. When both types of stimulator arrays were

available, the sessions were usually conducted with the bimorph array,

except for an occasional session with one of the airjet arrays for com-

parison.

While the three subjects had much more practice with the bimorph

stimulators, they expressed no strong preferences for one type of stimu-

lation over the other. InitiallySl3 preferred the airjets, but once

the bimorphs were adjusted to her liking, this preference disappeared.

However, the two types of stimulation differ physically and psychologically

in several ways.

The bimorph stimulators are considerably less noisy than the air-

jets, and the pin that contacts the skin is smaller than the cross

section of the airier. In addition, the bimorph array has a sensing

plate on which the subjects pressed their fingers (in both normal and

tangential directions) to allow the pins to contact the skin through

the perforations in the sensing plate. The airjets had no equivalent

of a sensing plate; the subjects merely held their fingers about 1/4 inch

above the nozzles. Since the bimorphs are mounted at a 45-degree angle

to the sensing plate, the pin motion was both normal and tangential to

the skin surface, while the airjets were all pointed vertically. Com-

pared with the bimorphs, the airjet stimulators are capable of more

intense stimulation, and, for research purposes, their spacing is more

easily changed. Also, in contrast to the bimorph stimulators, the air-

jets produce uniform stimulation over a nonuniform cutaneous surface

because skin contact is always made. For example, a typical report is

that a horizontal line, moved across the bimorph array by the Times

Square Program and sensed with two or three fingers, is lost between

the fingers and perceived as "dashed." However, with the airjet stimu-

lators, the same horizontal line is perceived as continuous.
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The sensation from the bimorph stimulators is described as a very

localized vibration, almost a tickle. The airjet stimulation is de-

scribed as softer and more comfortable.

In all cases the stimulation was on the fingers. Subject 3 used

either her left index finger or left middle finger, andSll used his

left index finger. Subject 13 used her right index finger. The finger

used generally corresponded to the way the subjects read Braille.

Figure II-3 shows how the finger was placed with respect to the bimorph

array. The reading rates were generally sufficiently fast that active

finger movements were useless for scanning a letter, and the subjects

always kept their finger in a stationary position.

Several methods were used to activate the tactile stimulators during

the course of the sessions. Initially, with $3, the airjet and bimorph

stimulators were each activated by a separate relaxation oscillator (see

Appendix D), which resulted in air pulses at about 70 cps and in an

LOCATION OF 12-BY-8
ARRAY OF BIMORPH
STIMULATORS ON
VENTRAL SIDE OF
INDEX FINGER

e

i

(0) TIMES SQUARE I

(b) TIMES SQUARE 2
TA- 46_6"I

FIG. II-3 FINGER STIMULATION

WITH THE BIMORPH ARRAY
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asynchronous-patterned stimulation. Later, a synchronous stimulator

drive system was substituted (see Appendix D), with the airjet stimu-

lators being driven at 200 cps and the bimorph stimulators at 250 cps.

(A lower frequency was required for the airjet stimulators because they

cannot operate reliably at 250 cps.)

Also, two Times Square programs were used. In one program, the

letters were moved from right to left along the long (12 stimulators)

dimension of the array, and in the other program, the letters were moved

from right to left along the short (8 stimulators) dimension of the

array.

Most sessions were conducted using the standard block letters

shown in Fig. II-4. A few exploratory sessions have been conducted with

Braille symbols, as shown in Fig. II-5. Subject 3 is now learning the

typewriter font shown in Fig. II-6, which was obtained by quantizing

standard pica type on a 7-by-8 grid.

Table II-i summarizes the conditions for the sessions, and Fig. II-7

shows a subject reading tactually.

D. Training Sessions

The initial training sessions with each subject were relatively

informal and flexible. Our objectives were (1) to determine if text,

coded into a dynamic tactile presentation of alphabetic shapes, could

be read at all, and (2) to investigate the relative importance of various

display parameters using trained subjects. Thus, we were more interested

in getting the subjects to a relatively high reading rate than in finding

out precisely how long the training period is and what the specific

characteristics of the learning phase are. To illustrate how these

sessions have been carried out, the experimenter's comments are recorded

at the end of the first seven sessions with $3.

1. Session 1

For the first part of the session, individual letters of the alpha-

bet were presented. The subject was not previously familiar with a

number of the alphabetic shapes, even their names. Four lists of about
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12 one-, two-, three-, and four-letter words were then presented, each

about three times. Then 14 sentences were presented using the same

words at two or three different speeds. Some sentences were repeated.

The subject had some difficulty with the four-letter words. Not all of

the sentences were read perfectly.

In the sentences there were two space bars (i.e., 14 empty columns)

between words. The word rate was estimated to be 5 wpm.

2. Session 2

Augmented lists of one-, two-, three-, and four-letter words were

presented, plus 20 sentences. Because of an equipment malfunction, the

letters in this session were redesigned to be seven instead of eight

rows in height. The subject identified most of the sentences correctly.

The procedure required that the subject speak each word as she read it

and that she be corrected immediately if she missed a word so that the

entire sentence would not be lost.

Eleven of the sentences had three space bars between words, nine

had two space bars, and one had a single space bar. No difference in

readability was noticed.

The word rate was estimated to be 7 wpm, assuming an average of

five-letter words plus two space bars between words.

3. Session 3

Lists of four-letter and longer words were given once each. Most

words were identified correctly, the four-letter words perfectly. Three

paragraphs of about five sentences each were the_ presented. The words

ranged from one to seven letters, and the word and sentence spacings

were the same as in normal typewritten text.

The air pressure at this session was i0 psi. In previous sessions

an air pressure of about 3 psi was used, but the subject thought i0 psi

was preferable.

The estimated reading rate for the sentences was 13 wpm.
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4. Session 4

A list of five- to nine-letter words was presented once. Of the

29 words, 20 were correctly identified (of the nine words missed, two

had Q's, which is a letter the subject had not learned).

Four stanzas from the poem "Clipper Ships and Captains"* were

presented at a rate of 12 wpm. Approximately four words per stanza

(out of 25 words per stanza) were incorrectly identified or not identi-

fied at all. Apparently the start-stop switch which left the airjet

array on when the program was stopped confused the subject. (In subse-

quent sessions the start-stop switch operation was modified to turn the

airjet array off.)

Two more poems were presented; then stanzas 1 and 2 of "Clipper

Ships and Captains," were given again at 17 words per minute. Two

words were missed in the first stanza and three in the second.

_ Clipper Ships and Captains, 1843-1860

by

Rosemary and Stephen Vincent Benet

There was a time before our time,

(It will not come again),

When the best ships still were wooden ships,

But the men were iron men.

o,o

There cargoes were of tea and gold,

Their bows a cutting blade;

And on the poop the skippers walked,

Lords of the China trade,

The skippers with the little beard

And the New England drawl,

Who knew Hong Kong and Marblehead
And the Pole Star over all.

Stately as churches, swift as gulls,

They trod the oceans, then--
No man had seen such ships before,

And none will see again.

--From A Book of Americans by Rosemary and Stephen Vincent Benet (Holt,
Rinehard and Winston, Inc., 1961).
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5. Session 5

Word lists and poems were presented at rates of 12, 13, 18, and

20.5 wpm. The subject spoke each word as she perceived it, and any mis-

takes were immediately corrected to preserve continuity of the material.

The accuracy of the sentence reading was 96 percent at 13 wpm, 91 percent

at 16 wpm, and 80 percent at 18 wpm. The results of the reading tests

given are shown in Fig. II-8. The most commonly confused letters were Q

and O; E, A, and K; and Y and T. (The peak value of the correct word

rate from Fig. II-8, namely 13 wpm, is the entry recorded on Fig. II-9.)

6. Session 6

Word lists and text were given ior practice. The word accuracy was

87 percent at 19 and 22 wpm. The most diificult letters seemed to be

V, W, X, Z, J, R, Q, and G. These letters were practiced.
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• 7. Session 7

The difficult letters from Session 6 were presented repeatedly for

practice. Then a random list of letters from the entire alphabet was

given at a rate such that each letter took 0.6 seconds to pass any point

and there was a blank space of 1.2 seconds between letters. The subject

correctly identified 50 letters of the 52 presented. Later the speed

was increased to 0.4 seconds/letter and 0.8 seconds between letters, and

the subject scored 49 correct letters out of 52 presented.

The subject was then asked to read several paragraphs (see Table II-2

for the material ...._JA_. Fi_are II-10 is a plot of words correctly iden-

tified per minute as a function of the rate at which the words were pre-

sented. The air pressure was adjusted from 15 to 20 psi for these tests.

Table II-2

READING MATERIAL

Subject Source of Material

i.

S3

SII, SIS

New Horizons Through Readin_ and Literature (California

State Department of Education, Sacramento, California,

1961).

2. Inn Fleming, Thunderball (New American Library, New York,
1962).

3. The Beatle Book (Lancer Books, Inc., New York, 1964).

4 • The True Story of the Beatles (Bantam Books, Inc., New

York, 1963).

5. Saturday Evenin_ Post, June 20, 1964.

i. Saturday Evening Post, June 20, 1964.

2. A. Huxley, Brave New World (Bantam Books, Inc., New York,
1955).

3. John C. Pallister, The Insect World (Dept. of Insects and

Spiders, The American Museum of Natural History).

4. Stanford Research Institute Journal, No. i, 1964.

5. Reader's Di_est, July and October, 1964.

6. Jules Romains, The Death of a Nobody (New American

Library, New York, 1961).
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Similar procedures were followed with Subjects lland 13, except that

the text material was chosen for their age and educational levels, and

the letter and word spacings were kept constant.

E. Exploratory Experiments

In addition to the normally scheduled practice and test sessions,

some exploratory experiments were conducted with Subject 3. Some com-

ments concerning these informal experiments and tentative conclusions

follow.

i. Sessions 12 and 14

Braille symbols consist of dots specified on a 2-wide by 3-high

matrix. A natural experiment was to encode the Grade i Braille alphabet

into Times Square Program 1 and present it to the subject. This was

done very informally in Session 12 (to get an estimate of its feasibility)

and more carefully in Session 14. The Braille presentation proved

readable on the bimorph array, though the performance was significantly

worse than with block letters (17 wpm with Braille, compared to 20 wpm

with block letters). It was unreadable with the airjets. The following

observations were made:
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(1) The bimorph presentation of Braille was somewhat hampered

by insufficient amplitude of vibration and by small ,aria-

. tions in the position of the sensing pins with respect to

the sensing plate (both of these caused significant error,

because of the lack of redundancy in Braille symbols).

(2) The airjet display failed because the air jet spacing was

abnormally large (for Braille symbols) and because the

"point sensation" of Braille was lacking.

2. Session 21

Two paragraphs from "The Beatle Book" (see Table II-2) were edited

to produce a text of short words only (none over seven letters), and

this text was presented to the subject at ÷_ ...... 1_,,e ..... rate of 26 wpm.

Her reading rate for this material was 23 wpm, compared with her plateau

rate for normal text of 20 wpm. This result agrees with the experimenter's

observation that the subject most frequently misses the longer words in

a text.

Another experiment consisted in allowing the subject to "backspace"

over the text using a special switch provided. The switch would cause

the program to jump back a given number of letters (say seven) and pre-

sent this portion again. This "backspacing" helped the subject identify

some relatively difficult words, for example in the sentence "New York

disk jockeys ... had been playing Beatle records as if all other performers

,! ,, . ,, ,,

had suddenly dropped dead, the words playlng, "suddenly, and "dead"

were all missed at first but correctly identified after two or three

rereadi ngs.

Finally, a stationary mode of letter presentation was tried with the

bimorph array (Frame Scan mode). Because the letters were wider than

the finger tip, the subject could identify the letters if she could move

her finger horizontally. If their on-time was relatively short, however,

she lost enough of the letter to give a poor performance.

3. Session 27

In this session $3 was asked to rate the "goodness" of the stimu-

lation produced by various values of pulse width and pulse interval of

the bimorph drive signal. The reported judgments are given in Table II-3.
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Table II-3

$3 "GOODNESS" JUDGMENTS ON STIMULATION

PRODUCED BY VARIOUS PULSE WIDTHS AND PULSE INTERVALS

Pulse

Period

(msec)

8

6.3

5.0

4.0

3.2

2.5

Pulse Widths

(msec)

Best Good

1.5 1

1.5 1

2.5 1.5, 2

2 1.5

1.5 1

1 1.5

Compari sons

Among

"Best" Combinations

(i means best)

On this basis, a pulse width of from 1 to 2 msec and a pulse interval

of 4 msec was chosen for subsequent sessions.

4. Session 53 - 60

In these sessions $3 was taught the capital typewriter font shown

in Fig. II-6. It was found that there was very little transfer from

the block letters of Fig. II-4, so that the learning resembled the

initial sessions with this subject. This font is obviously more diffi-

cult than the block letter font, primarily because of the serifs, which

make it difficult to distinguish between such letters as B and E, F

and P, U and V, and H and N. However, after these sessions, these

letters could be adequately distinguished tactually so that text could

be read at i0 wpm. Further practice is expected to increase this rate

to the block-letter reading rate.

F. Reading-Rate Determinations

During the sessions in which reading-rate determinations were made,

a strict schedule of practice, rest, and test periods was followed.

There were one-hour sessions and four 2-minute tests. During each test

the equipment was set to present the words at a predetermined fixed
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rate. The subject called out the words as she recognized them and was

corrected only in the extreme cases in which a sentence or more was

missed. Only correct word responses were counted in determining the

reading rates.

The results of these determinations are shown in Fig. II-9. Some

of the variability in these reading-rate determinations is due to varia-

tions in the difficulty of the reading material. The textual material

used in each session is given in Table II-2. However, other factors

also significantly influenced the reading rates. For example, the large

dip in the curve in Subject ll'srecord was in part caused by giving him

too high a presentation rate (31 wpm) too soon. His accuracy fell to

such an extent that his correct wpm rate was lower than it had been for

slower presentation rates. Also, the rapid rise in reading rates from

about 20 wpm to 30 wpm for $3 was undoubtedly influenced by the large

amount of practice at a 24-wpm presentation rate and by the programming

change which increased the on-time of the letter patterns (see discussion

in connection with Fig. 2-6 in Appendix D).

Besides textual material, random (equally probable) letter tests

were also given to $3. The results of these tests are shown in Fig. II-lO.

G. The Effect of Array Width _

An important question is how many stimulators are necessary for

adequate perception of alphabetic shapes. The answer to this question

is relevant to the extent of the spatial communication capacity of the

tactile sense as well as the practical considerations in the design of

devices. In an attempt to shed some light on this question, sessions

29 to 37 with $3 were devoted to practice and tests with various effec-

tive widths of the stimulator array. The number of columns activated

was varied by a slight modification of the computer program so that any

number of columns from 1 to 12 could be used.

_ The work reported in this section was carried out and reported by
B. Lane.
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Subject 3's index finger made contact with only four columns of the

array, therefore tests were only run for array widths of one, two,

three, and four columns. Since the letters used in these sessions were

five columns wide, some degree of temporal integration had to be pcr-

formed by the subject with each of the array widths used, the one-column

array requiring the most integration. Thus, all of the reading done

during this series of sessions was analogous to a slit scan of embossed

letters, the variable being the width of the slit.

The parameters held constant throughout the experiments were as

follows:

(I)

(2)

(3)

Presentation rate was 24 wpm using the Times Square 1

single-jump mode.

All text was taken from "The Beatle Book."

The bimorphs were synchronously pulsed at 250 pps with a

50-percent duty cycle (2 msec).

A strict schedule of reading and rest periods was followed for

each one-hour experimental session, as follows:

Practice i0 min. Practice i0 rain. Practice i0 min. Practice
Rest i rain. Rest i min. IRest 1 rain. Test
Test No. 1 2 rain. Test No. 2 2 min.kTest No. 3 2 rain. 4

Rest 2 min. Rest 5 rain. Rest 5 rain. Test No.

Reading accuracy was tabulated for each of the four 2-minute tests, and

an average for the session was calculated from these four results. In

all cases the reading during each test was uninterrupted, with the sub-

ject's mistakes or omissions being verbally corrected, and accuracy was

defined as the percentage correct of all words presented.

Figure II-ll is a graph of the results of this series of tests.

The points on the graph are averages of all tests at each setting, and

the highest and lowest test scores are also indicated.

i0 min.

i min.

2 min.

H. Discussion (Section II_ "Tactual Reading of Textual Materlal )

All three blind subjects were reading material aimed at their age

and educational levels at a rate of over 20 correct wpm (24-wpm presen-

tation rate) by the end of 17 hours of training. (Subject 13 attained
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this rate after only six hours of training.) Even though the reading

rate determinations with $3 were interrupted for other experiments, sb_e

reached a correct-word reading rate of above 30 wpm (37-wpm presentation

rate) by her 45th session. By comparison, Geldard (1957) reports a

reading rate of 35 wpm, after 16 hours of training with an arbitrary

tactile code employing five stimulator locations, three intensities,

and three durations. This rate was obtained with only one subject,

however, and it is not clear whether 35 wpm was the presentation rate

or the correct-response rate. Also, the difficulty of the material read,

which we have found can affect the reading rate by more than 2 to i, is

not discussed.

When one considers how long it normally takes to become proficient

with analogous tasks, all of these times are so short that they can only

indicate the potential, not suggest any sort of limits.

The fact that the material was presented at a constant rate in our

sessions undoubtedly had a great effect on the reading rate. As with

visual reading, a much better system would be to allow the subject to

control the presentation rate. An important problem to be studied is

what form this control should take, as well as other capabilities for

"browsing" through the material.

Even though our training sessions were somewhat informal and not

strictly controlled, we have the impression that there is a temporary

plateau in reading rate around 20 wpm and that it takes considerable

time to take the next jump to around 30 wpm. It is interesting to

speculate that these plateaus correspond to letter-at-a-time recognition

and the beginnings of word-at-a-time recognition, respectively. We

will have a better understanding of these plateaus and subsequent

learning performance as these training sessions continue.

In the experiments on array width, the experimenter could not read

the visual display as well as S3 could read the tactile display with

one- and two-column widths. While this is an informal observation, it

suggests that the subject may achieve better temporarl integration with

touch than with vision. Visually, the difference between one- and two-

column array widths seemed to rest on the ability to perceive corners
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in the two-column width, which is difficult if not impossible with the

one-column width.

The research on the optophone, reviewed by Freiburger and Murphy

(1961), permits a comparison with an analogous one-column auditory dis-

play. They report a 10-wpm reading rate after over lO0 hours of train-

ing. The large improvement we found in going from one to two columns

may account for part of this relatively poor performance. However, the

experiments with the optophone involved manual tracking of the material

by the subject, which was probably also a factor.

There are several practical situations in which tactile reading of

alphabetic shapes has advantages over an arbitrary code. The practicality

of a direct optical-to-tactile transducer that would give the blind

direct access to the printed page depends on alphabetic shapes being

tactually readable. Moreover, alphabetic shapes are spatially redundant

stimuli and less susceptible to noise than a nonredundant code, an im-

portant point in any communication situation.

The importance of character shape is indicated by the sessions in

which the typewriter font was used. The serifs make these letters less

distinguishable tactually, but it is already clear that they can be

learned with the present equipment in less than i0 hours.
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III SPECIALLY DESIGNED ALPHABET*

Initially, subjects have considerable difficulty reading the

capital-letter alphabet used for the blind subjects. The general

reaction was that there was just too much air; i.e., each letter felt

like a blast of air without much structure. The primary purpose of the

study discussed in this section was to determine whether an easily

learnable special tactual alphabet could be developed for use in con-

junction with the 12-by-8 airjet array. The results showed that such

an alphabet could be developed. In the initial study, two project per-

sonnel were used as subjects. The approach was to use one of the sub-

jects, S1, to develop an alphabet of 26 distinguishable symbols and

then to use the second subject $2 to get a measure of learning rates

with the final alphabet form. The results of this study are discussed

below. Subsequently, other tactually-naive subjects were taught the

alphabet; the results of those training sessions are discussed separately.

A. Developing an Alphabet

The procedure for designing the alphabet was subjective and based

on trial and error methods. In order to take advantage of possible

positive effects from the transfer of visual imagery to tactual imagery,

the standard alphabet was first presented in block letters. A pro-

gressive process of modifying the letters was then pursued, while at the

same time, the attempt was made to maintain elements of similarity to

the standard letters. In many cases this was possible, but in others,

unrelated symbols were Substituted to facilitate rapid discrimination.

Letter modifications continued until each letter could be recognized

with almost perfect accuracy when the letters were presented in random

order in the frame presentation mode, with about 150 msec duration, and

@ This section differs from the previous one in that random letters were

presented in this study, in contrast to textual material. Thus, since

the sequential redundancy of English was not present, each stimulus

contained correspondingly more information. This fact should be re-

remembered when comparing the data in the two sections.
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with interletter spacing, of approximately i second. The stimulation

site was the ventral surface of the fingers on the left hand, as indi-

cated in Fig. III-l.

The alphabet derived in this subjective manner, using the frame

presentation, is shown in Fig. III-2. Its development required approx-

imately 15 hours of computer time spaced in two-hour periods twice per

week. The patterns of Fig. III-2 are assembled in groups rather than

/
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alphabetical order. The various groups are (a) single point, (b) double

point, (c) triple point, (d) single curved line, (e) single straight

line, (f) parallel double lines, (g) intersecting double lines, and

(h) some sundry patterns.

1. Comments on the Alphabet Set

The three "sundry" patterns of the last group remained from early

tries in which common block letter forms were used. By altering and

abstracting enough of the other letters, these three patterns remained

fairly distinguishable.

For each of the individual points of the single and double-point

patterns, two stimulators instead of one were used as shown in Fig. III-2.

The triple-point patterns could probably also be doubled to some advan-

tage, although they are readable as is. Vertical doublets could also

be used. One quadruplet dot pattern was tried, with four dots arranged

in the four corners, but this pattern was difficult to distinguish from

a crossed-line "X" pattern.

The two curved-line patterns are readily distinguishable. Vertical

curves (i.e., curves opening to the top and bottom) would not be dis-

tinguishable from the W and M patterns, which are straight-line versions

of these vertical curves.

The straight-line patterns are quite distinguishable. It appears

that 45 degrees is about the minimum angular difference for lines to be

easily distinguished. As it is, confusion can sometimes arise between

the N and I and the K and I if the hand becomes a bit skewed on the array.

The disconnected double lines are very distinguishable. Note that

the separation between the two horizontal lines of the F is the same as

the separation between the vertical lines of the H.

The corner patterns of the L, J, P, and G are easily distinguished.

By rotating these corner patterns 45 degrees we can get four other pat-

terns, two of which are used as the M and W. The other two possibilities

are patterns with the apexes pointing left and right like the sloping

lines of the ordinary letter K and its mirror inverse but these would

probably be confused with the circular patterns of the C and D.
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The T is fairly good but probably could be strengthened like the U

by doubling the top bar. Without the double bar for the bottom of the

U, the pattern was sometimes confused with an H. Distinguishing between

the T and Y would probably be easier if the dots of the Y were doubled.

2. Modifications from Second-Subject Training

After S1 had successfully acquired a meaningful alphabet for him-

self, $2 began learning the same code. He was well acquainted with the

alphabet visually before attempting to learn it tactually.

The initial stimulation site on $2 was the palm of the left hand;

however, it was found that the palm was somewhat less sensitive than

the fingers, and hence some difficulty was encountered with some letters,

particularly the W, M, and X. The W and M were hard to distinguish

from the R and B, respectively. The two dots of the X were often sensed

as a single line, which is the B. It is interesting to note that the

subjects had little trouble distinguishing between the Z and R, which

both appeared on the distal part of the palm. This part of the palm is

more sensitive than the heel of the palm, where the X and B appeared.

Observations made by S1 suggested that movement of the hand during

stimulation was helpful; therefore, the procedure was modified so that

stimuli were presented by the "Times Square" moving-letter display.

This procedure sharply reduced errors by $2 and a rerun for S1 also

produced a significant improvement in performance. In this mode, both

subjects were capable of errorless discrimination of randomly ordered

letters at a rate of almost one per second.

Observations by $2 initiated the following investigations in the

attempt to determine the ideal method of stimulus presentation.

a. Edge Effects

It was found that considerable information is obtained from

sensations at the edges of the display. Assume, for example, that the

letter L moves across the display. All at once a strong line is felt

on the fingers at the right (entry) edge. This sensation at once

delineates the number of letter possibilities. Then at the left (exit)
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edge, the strong line disappears, but continued excitation occurs at a

single lower point. Only when the pattern strikes or leaves the fingers

are these effects felt, but often this information is enough to identify

the letter. The effects are essentially the same whether the fingers

are held loosely or closely together, and whether three, two, or even

one finger is used instead of four. Sometimes a clear sensation of the

letter pattern is perceived as the pattern moves across the fingers, and

in this case edge information is unnecessary; but sometimes a clear sen-

sation is not achieved, and then edge information is very useful.

Significant edge information is obtained from almost every

letter. For example, with K or N, a strong sensation of a point moving

vertically along the edge is felt as the letter enters and leaves the

display area. Or, with the W and M, there is a sequential up-and-down

sensation.

b. Letter Packing

With a letter appearing every seven columns, portions of three

letters can simultaneously appear on the display. When the spacebar is

energized between each letter entry, then every other letter position

is empty. With this spacing, one letter leaves the display as another

enters. With a double spacebar between letters, only a single letter at

a time passes the display.

Both subjects noted little effect when the packing was changed

from two spacebars to a single spacebar. However, when the letters were

packed with no spacebars between, it became almost impossible to distin-

guish the rather complex composite patterns moving across the display.

But when the basic letter packing was increased so that there was a

letter every eight columns, with no spacebar between letters, both sub-

jects found that separate letters were again readily distinguishable.

It was decided, therefore, that considerably more training may be re-

quired as letters become more closely packed. A second observation is

that because some of the letter patterns have disconnected portions,

there is a possibility that a portion of one letter will be perceived

as part of the adjacent letter; for example, a sequence ZIZ might be
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sensed as SYS, or vice versa. However, again, this situation might be

improved with extensive training and letter redesign. Language context,

of course, also helps.

c. Rate of Presentation

With a letter every eight columns, S2 was able to read a ran-

dom list of letters at a rate of almost one a second. (Individual frame

time was about 125 msec; it takes eight frames for a letter to move past

any given point of the array.) At this rate, some errors were made,

probably because training had not advanced to the point where letter

response was automatic and there was still significant delay between

the pattern perception and the letter calling. An interesting effect

noticed by both subjects is that when letters were packed closely together

in a sequence, once attention was distracted from the sequence it was

difficult to start again. While identification is going well, there is

a strong sensation of familiar patterns moving across the fingers, and

they can be consciously followed. One can focus attention on different

portions of the letter patterns as they move across the display. When

attention is lost, however, the subsequent excitation does not seem to

be moving but merely feels like a complex pattern playing on the hands.

Generally it is the passage of a particularly simple configuration, say

a double-bar H or single-line I, that "resets" the subject, and all at

once familiar patterns are again moving across the display.

d. Number of Fingers Used

The two subjects tended to have similar reactions to the

various phenomena discussed thus far. However, significant difference

was noted in the effects of different numbers of fingers used with

packed letter sequences. Subject 2 could not read tightly packed letter

sequences when using all four fingers. He could not isolate various

portions of the complex moving display for individual letter identifica-

tion. However, when using only two fingers and only six of the twelve

display columns, he could do very well. In fact, the letter-a-second

rate noted above was achieved under these conditions. He could perform

nearly as well reading with only a single finger. But with three and
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four fingers, the steady sequence of patterns were essentially unread-

able. Subject l, however, appeared to have little problem using four

fingers. He felt that the results with four fingers and with two fin-

gers were approximately equal, with a slight preference, in fact, for

four fingers.

Although $2 could read fairly well with a single finger rest-

ing on the array, results deteriorated if the finger received infor-

mation from fewer than three columns. With the airjets spaced on

i/4-inch centers, a single finger can receive excitation from about

five columns of the display. If as many as nine columns are covered

so that the finger receives excitation from only three adjacent columns,

reading is still quite good. However, if i0 columns are covered so

that excitation is from only two adjacent rows, reading deteriorates

considerably; and with only one column of stimulation, the results are

poor. In other words, it seems, at least for $2, that there is some

optimal mix of spatial-temporal excitation. With more than two fingers

and six columns of the display, and with less than three columns and one

finger, results deteriorate. These subjective results agree, at least

as far as minimum width is concerned, with the quantitative study re-

ported earlier in Section If.

B. Training Tactually Naive Subjects

Although two experimenters had learned this alphabet, it was felt

that the validity of their accomplishments should be checked against

the performance of tactually naive subjects. For this purpose, four

male high-school students, ages 16 to 19, were hired for about two

months to learn to read the symbolic letters when the letters were pre-

sented randomly. Other objectives were to measure, under standardized

conditions, the degree to which each letter was confused with all others

and to attempt to establish tentative limits on the speed with which

separate signals could be recognized with accuracy.

For this study the alphabet of Fig. III-2 was modified to that shown

in Fig. III-3. The main changes were:
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(i) All letters were standardized to five-column width.

(2) The points of the A and V were strengthened.

(3) The vertical bars of the H were brought closer together.

This not only improved recognition of the H but con-

siderably reduced interletter interaction, e.g., reading

the sequence HI as IH.

(4) The T and P were raised to standardize the heights.

(5) The tail of the O was dropped.

The four subjects were initially presented with a set of flash

cards and were asked to memorize the alphabet visually to a criterion

of three errorless presentations of the entire alphabet. Each subject

was tested at the beginning of the next session and each was successful

in recognizing all letters.

To minimize computer time, two subjects were trained simultaneously

in the early sessions. To make this possible, the 8-by-12 airjet array

was split in half so that each subject used only an 8-by-6 array, and

the computer program was arranged so that the identical information was

presented on each half array. The subjects were seated opposite each

other with a screen placed between them to prevent visual contact. All

subjects used the index and middle fingers of the left hand as receptors

of the stimuli. These fingers were extended from an arm-and-hand rest

over and approximately 1/4 inch above the array.

The airjet stimulus was presented in all cases by the Times Square

Program, in which the moving symbol passed across the two fingers at a

previously fixed velocity and spacing between letters.

During the initial session, each subject was allowed to see a visual

display of each letter while experiencing the tactile stimulus. Follow-

ing this, the subjects were required to write down their responses prior

to receiving auditory feedback. In these initial trials the presenta-

tion speed was arranged so that each letter required 0.525 seconds to

pass across the six columns of the half-array, with a spacing between

letters of (0.525 × 6) or 3.15 seconds; that is, there were five blank

letter spaces between each actual letter. Air pressure was adjusted at

I0 psi. The sequence of letters was controlled from a previously
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arranged list of 6 × 26 = 156 randomized letters. In each experiment

'a different starting point in the list was selected.

By the third session the subjects found it confusing if auditory

feedback was given between letter presentations, and they reported that

they tended to write down their response hurriedly in anticipation of

the feedback.

During the first six sessions, the letter spacing was held fixed

at five blank spaces between each letter presented, but the speed of

the moving display was continually increased. By the sixth session,

the velocity was such that it took 0.38 seconds for a letter to pass any

point of the array. At this velocity, and with five blanks between

letters, the actual presented letter rate was (6 X 0.38), or slightly

more than two seconds per letter.

Initially, each pair of subjects was trained identically at a rate

determined by the slower member of the pair, but the two pairs were al-

lowed to progress independently. Actually, one pair of subjects pro-

gressed much slower. In fact, one member of the poorer pair was retired

after 15 sessions. Despite his having received special attention, this

subject did not, even at slow rates, achieve sufficient proficiency.

The second member of that pair performed satisfactorily, though with

less skill than either member of the second pair. However, experiments

with this subject terminated after about 20 sessions because the subject

could no longer participate. One of the subjects of the better pair had

to drop out for several weeks after the twentieth session; therefore,

there is continuous data on only one subject, S4, who, incidentally,

was the best of the four. His accuracy curves for each session are

indicated in Fig. III-4. On the same figure is plotted the number of

correct letters per second. In interpreting the latter curve, the fol-

lowing changes in letter spacing at Sessions 7, 9, 13, 17, and 21 must

be noted. From the seventh through the 24th session, the velocity of

the display was maintained constant but the number of blank spaces was

progressively reduced as follows: Only four blank letter spaces on the

seventh session; three spaces on the ninth session (at this rate the

subjects did not have time to write their responses, and a tape recorder
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was used; this procedure was maintained in all further sessions); two

spaces on the thirteenth session; one space on the seventeenth session;

and no spaces on the twenty-first session. With no empty letter posi-

tions, i.e., with the letters closely packed, the overall letter rate

was approximately 0.43 seconds per letter.

With closely packed letters it was found that the subjects would

often tend to lose their place and become confused, allowing a long

series of letters to pass without responding. A subject would become

"reset" with the passage of a particularly simple pattern, like the

letter I, and would then respond with characteristic accuracy until he

became confused again. (This same phenomena was noted in the initial

sessions, when project personnel were used as subjects.) In view of

this erratic response the mere statement of a total average accuracy

figure is misleading. Therefore, in the data of Fig. I11-4, accuracy

is measured as a percentage of correct responses of the total actual

responses. The problem of erratic response was diminished by allowing

the subject to stop and start the display manually whenever he loses

context.
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To illustrate the types of errors made, a confusion matrix for Ses-

sions 18 through 20 is shown in Fig. III-5 for subject $4. Note in par-

ticular the lack of symmetry in this plot, indicating that no particular

pairs of letters were reciprocally confused. For example, a T was some-

times called a Y but never vice versa. The same result was generally true

for the other subjects, indicating that the letter designs for this alpha-

bet present no serious confusion factor. Looking over the entire data on

all subjects, the following observations on letter confusion can be made:

(i) No pair of letters was reciprocally confused by more than

one subject.

(2) Only two subjects had a reciprocal error. One subject con-

fused YT and TY, while another had trouble with RSZ.

RESPONSE
A B C D E F G H I J K L M NO P Q R S T U V W X y Z

A 0

B I

C 0

D 2

E 3

F 0

G 3

H 0

I I

J 3

K 0
m L 1
_M e
-_N 0
i,-

¢n 0 0

P I

(3 2

R 3

S 6

T 8

U 0

V 2

W I

X I

Y 0

Z 6

TOTALS 1501 224012 1402041 7211 14040

RA- 471g-311

FIG. 111-5 CONFUSION MATRIX FOR SESSIONS 18 THROUGH 20, SUBJECT S4
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(3) All subjects experienced some confusion with X.

(4) M, Z, Y, T, and P were confused to some degree by all

three subjects.

C. Discussion (Section III, "Specially Designed Alphabet")

It was encouraging that with so little effort it was possible to

devise a special alphabet which a subject who had as little as 30 sessions,

or about 15 hours of training, could perceive at a rate of almost two

random letters per second with about 80-percent accuracy. It seemed

clear that with further modification of the alphabet set, and with con-

siderably more training, significant improvement in performance could

be obtained. However, at the time these results were obtained it was

felt that rather than continue with extensive training on this special

alphabet, we might more profitably engage in some basic experiments

with this alphabet, while extensive training sessions were being con-

tinued with the blind subjects and the block-letter alphabet. Hence,

further work with the special alphabet was in connection with the study

reported in Section VI on the effects of pattern movement. We hope to

renew alphabet-design studies with improved display techniques and also

to consider different forms of codes.
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IV TACTILE TKACKING EXPERIMENTS

A. Introduction

Two-dimensional visual and tactile tracking experiments have been

performed using compensatory-type displays. Three kinds of compensatory

displays were used, an oscilloscope, a 7-by-7 array of neon lights, and

a 7-by-7 array of airjets. For the lights and airjets, the x and y error

signals were sampled every 150 msec and each was quantized into seven

equally spaced levels. The corresponding row and column of both 7-by-7

display arrays were activated so that only the stimulator at the inter-

section was energized. (The equipment is described in Appendices A and F.)

A photograph of a subject engaged in a tracking experiment is shown

in Fig. IV-I. While this photograph shows the tactile stimulator array

on the forehead, all experiments reported here were performed with the

region of stimulation arbitrarily chosen in the vicinity of the nose,

with the reference stimulator indicated by actual contact between the

center airjet nozzle (which was extended) and the tip of the nose.

The experiments with the oscilloscope display were performed to

give a basis for comparison of our results with the results reported

in the literature. Experiments were performed with the array of lights

to determine how much the visual performance is degraded by the sampling

and 7-by-7 quantization. The results with the quantized tactile display

can therefore be compared with an analogously quantized visual display

and a continuous visual display.

In all three displays, the task was to keep the error stimulus in

the center, the position of the error stimulus away from center indicating

the direction and magnitude of the error. All three displays were con-

structed so that when the error was larger than the full-scale range of

the display, the stimulus remained at the edge of the display (thereby

indicating the direction of the error) instead of disappearing off the

scale.
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B. Effect of Display Gain with Low Command Frequencies

In initial experiments, command signals composed of the sum of

three sinusoids of frequencies 0.05, 0.i, and 0.2 cps, all of equal

amplitude and arbitrary phase, were used. An analog computer generated

these command signals, computed the error, and computed the integral of

the squared error. Figure IV-2 shows the computer program.

COMMAND
GENERATOR

SUBTRACT

J DISPLAY GAIN

, T o
SQUARE INTEGRATE

SCOPE

0

/'e2dt

O

RA-4719-32

FIG. IV-2 ANALOG COMPUTER PROGRAM FOR EACH COORDINATE

IN THE INITIAL COMPENSATORY TRACKING EXPERIMENTS

One subject was used for all three displays. After several hours

of practice, data were taken for all three displays and for various

values of gain for the displayed error. The results averaged over seven

sessions, each of several hours duration, are shown in Fig. IV-3. The

ordinate is the integral of the squared error over 60 seconds expressed

as a percentage of the integral of the squared command over the same

60 seconds. On this basis, if the subject does not move the joystick,

the percentage mean-squared error is 100 percent, and if the subject

tracks perfectly, the percentage mean-squared error is zero. Both x and y

mean-squared errors were averaged together. The abscissa is display gain

expressed as the ratio of peak command to the signal for full scale on

the displays, for neutral stick. That is, if the gain is unity, the

maximum command signal with no movement of the joystick results in a

displacement of the error marker on the display equal to full scale.
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FIG. IV-3 PERFORMANCE vs. DISPLAY GAIN FOR COMMANDS COMPOSED
OF 0.05, 0.01, AND 0.2 cps

In Fig. IV-3, the difference between the scope and light display

curves represents the reduction in performance resulting from quantiza-

tion of the error voltages. One way of looking at the performance with

the 7-by-7 display arrays is to relate the mean-squared error to some

m

equivalent constant error, n, expressed as an equivalent number of lights

or airjets on the array. This relation is

(n) 2 = 0.26 _ k 2 ,

where the constant of 0.26 results from the particular gain and quanti-

zation levels used in the system, and where
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e = the integral of the squared error divided by the integra-
tion time in seconds

k = the display gain.

Viewed in this way, at a gain of 4 in Fig. IV-3, the performance

with the light display is equivalent to a constant error of 1.2 lights.

At a gain of 100, the performance is equivalent to a constant error of

27 lights. In the latter case, since full scale from center along

either the x or y axis is only three lights, the performance with a gain

of 100 indicates that the error light stimulus was off scale most of the

time. The relatively good performance at this gain suggests that direc-

tion information is relatively more important than magnitude information.

However, it should be pointed out that typically the mean-squared error

is not accumulated at a constant rate, but in jumps corresponding to

large values of command signals, as shown in Fig. IV-4.

The relatively poor performance at low gains indicates that for

the particular spacing of airjets used (1/4 in. apart) at this ]_tion

(in the region of the nose), the sensory resolution was probably worse

than with analogous light display. However, the close-to-identical

performance with the airjet and light displays at greater gain settings

indicates no significance difference in performance due to the tactile

sense, at least at these command frequencies.

SCOPE DISPLA_ DISPL_ GAIN 5.2, CUTOFF FREQUENCY 0.16 cp$

1, I _1, i llif ! ;

_

_ I t IJ/X J l tXI I _ N/l'i\! ! I-_-) -

_ _ _ ' _ _ _'_ _ _'i"- A____L.i_LA__LA_,_,_L..\ \ "....

FIG. IV-4 TYPICAL COMMAND AND INTEGRAL SQUARED ERROR SIGNALS
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C. Experiments Including Higher-Frequency Command Signals

At this point the experimental setup was revised so that more com-

plex command signals could be used and more computations could be per-

formed on the data. The resulting system is shown in Fig. IV-5. In

this system the command signals, each consisting of the sum of 16 equal-

amplitude sinusoids at frequencies of 0.I to 1.6 cps, in steps of 0.i cps,

were prerecorded on magnetic tape. These command signals were then

filtered, in real time, with a simple lag of adjustable corner frequency.

The results averaged over three subjects are shown in Fig. IV-6.

In this figure, percent mean-squared error is plotted versus display

gain for three values of the corner frequency of the command signal

filter. The data for a display gain of 25 is replotted in Fig. IV-7

versus the bandwidth of the filter for the command signals.

Two major differences between these results and the results with

lower-frequency command signals in the initial experiments are

(i) Performance with the airjet display was significantly

worse than with the light display; and

(2) The percentage mean-squared error was higher for both

displays,exceeding i00 percent in some cases.

COMMAND

SIGNALS I _ I

FROM I r_ I COMMAND (c)
C TAPE J- I

1
RECORDER- L,_ - k._.,/

L.R FILTER

o RESPONSE

_ ScZdt

SQUARE INTEGRATE

ERROR

c ,
RA -4719-35

FIG. IV-5 ANALOG COMPUTER PROGRAM FOR COMPENSATORY TRACKING

EXPERIMENTS USING PRERECORDED COMMAND SIGNALS
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The first difference indicates that either the frequency response

of the tactile stimulators was poor enough to affect the performance or

that the tactile reaction time was worse than the visual, in the experi-

ments described later in this section no consistent difference was noted

between tactile and visual reaction times. Thus, it appears that the

former possibility was the case.

In order to see how a percentage mean-squared error of greater than

I00 percent can reasonably occur, it is helpful to relate mean-squared

error to the pertinent correlation functions. The required relation is

e (5) = _cc(O) - 2_r c(5) + _rr(O)

where

e (5) = the mean-squared error between the command, delayed

by an amount 5, and the response

_cc(O) = the mean-squared command signal or the autocorrelation
coefficient for the command
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_rc(6) = the cross correlation between the command and the
response evaluated at 5

_rr(0) = the mean-squared response signal or the auto-
correlation coefficient for the response.

Thus, if there is as much power in the response as in the command,

the percentage mean-squared error would reach as much as 200 percent if

the cross correlation between command and response went to zero. Typi-

cally, the response power is at least 70 percent of the power of these

command signals.

D. Improvement of Response by Training

As a result of the variation noted in the response which the subject

gave for a fixed setting of gain and cutoff frequency, a brief investi-

gation was made into the possibility of improving the response by train-

ing. As in the previous experiments, the prerecorded command consisted

of the sum of 16 frequencies between 0.1 and 1.6 cps, in steps of 0.1 cps,

filtered in real time with a simnle In_ of _djNgt_h]_ oo.no, f.oo,,a_o.,

The command and the subject's response were recorded on a pen recorder;

and since the training was done in a series o£ one-minute runs, the

subject could be shown recordings of the previous run and understand

the type of improvement required. A different part of the command tape

was used for each run so that the subject could not learn the response

to one section of command over the repeated trials.

The results of a typical training session are shown in Fig. IV-8

for the airjets at the lowest values of gain and cutoff frequency.

For comparison, the final result of a run with the scope is also

given, showing that, at least at the gain and cutoff frequency used here,

the airjet response could be made comparable to that of the scope, though

the latter shows a delay of 0.2 to 0.4 second, whereas the airjets show

a delay of 0.4 to 0.7 second.

In spite of the closer resemblance between command and response after

training, the subject did not necessarily sense any improvement in his

own tracking performance. For example, the marked improvement shown

above was made by suggesting that the response be "less jerky" or
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• "of lower amplitude." The improvement was observed to level off after

about five runs, after which the performance remained constant. It was

• also found that the training advantage was lost very quickly, and retrain-

ing became necessary after another four or five minutes of tracking.

E. Error Evaluation with Delay*

The human transfer function is often characterized as having a

pure delay factor which arises from sensor excitation, nerve conduction,

and computational lags. The following experiments were carried out to

see whether introducing a delay between command and response before

computation reduced the integral mean-squared error and if there was any

significant difference between the continuous and discrete modes, as

well as between the visual and tactile sense modalities in this respect.

The displays used were, as before, and oscilloscope and two discrete

displays consisting of the 7-by-7 neon light array and the 7-by-7 airjet

matrix.

The experiments were initially performed as described above except

that a Donner transportation delay generator (Model 3770) was used to

delay the command signal just before computing the error, squaring, and

integrating. Since an error signal is also used to drive the equipment,

a second difference amplifier was required in the analog computer program

to compute the error, using the undelayed command signal• The command,

the sum of 16 frequencies previously recorded on tape, and the subject's

response, were used to compute the error in real time for a number of

runs, using different values of delay from undelayed command to 0.5 second.

The results obtained indicated that any effect attributable to the

delay was lost in variation between runs, and it was therefore decided

to record the response to a given command on magnetic tape and use the

same run to compute the errors at different delays.

A new tape was prepared to provide the x- and y-axis command signals.

The sum of eight frequencies of equal amplitude, 0.05, 0.2, 0.4, 0.65,

* This work is reported by H. Seeley.
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0.9, 1.2, 1.5, and 2 cps, was generated by the analog computer and

recorded with arbitrary phase relations on two of the four channels of

the Ampex FM tape recorder. The x- and y-axis signals were recorded

s_parately to prevent any correlation. These signals were then played

back and £iltered to provide the command, and the subject's response to

these signals was recorded on the two remaining channels. Three values

of gain and cutof£ £requency were used, and for each type of display,

three runs were recorded, making a total of 81 separate runs. One

subject was used for the series, and the various combinations of gain

and cutoff frequency were presented at random to minimize any long-term

training effects.

A typical recording session ran as follows: For a particular

setting of gain and cutoff, the subject was trained, as described earlier.

When the performance showed no further improvement, three runs of 50

seconds each were recorded, each run being separated on the tape by 5

seconds of random noise. This whole procedure was then repeated £or the

other displays. The data were analyzed using the analog computer program

shown in Fig. IV-9.

Each run was played back and the integral mean-squared error com-

puted £or settings of the delay between zero and 0.7 second in steps

of 0.1 second. The delay quoted represents the theoretical delay between

command and response; an extra 0.2-second delay was added to allow for

COMMAND _ COMMAND (c)
CHANNEL o_. o j'c2dt

L P FILTER DELAY

FROM TAPE
-_I_'RECORDER

RESPONSECHANNEL

SQUARE INTEGRATE

E_ROR o1"e2,,
(e)

TA-4656-8

FIG. IV-9 ANALOG COMPUTER PROGRAM FOR EXPERIMENTS

USING THE DELAY GENERATOR
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the delay introduced by the separation between record and playback heads

at the time o£ recording. The two channels of the delay generator, each

set at half the required delay, were connected in series to minimize

distortion, which was found to increase with the delay introduced.

The same portion of each run was used. The computation was started

exactly 15 seconds after the beginning of each run, and the integration

was made over a 30-second period. This was repeated for the various

values of delay.

Direct current levels in the tape recorder were particularly trouble-

some at first, and their effect on the results was quite serious as they

were integrated over the 30-second period. Zero levels to which the

playback amplifiers could be adjusted were therefore recorded each day.

The gain settings of these amplifiers were also corrected before computa-

tion.

Only the x-axis response was analyzed, since it was felt that this

response would give sufficient indication of the effects. In one case,

however, where performance with the airjets was markedly better than that

with the lights, the y-axis response was also analyzed. The results

obtained are shown in Figs. IY-lO and IV-ll. The display gain shown on

these figures was actually a potentiometer setting on the computer and

represents the d-c gain of the display. Table IV-I relates these values

Table IV-I

DISPLAY GAIN FOR VARIOUS COMBINATIONS

OF DC DISPLAY GAIN AND COMMAND SIGNAL BANDWIDTH

Command

Signal

Bandwidth

(cps)

0.16

0.64

1.05

DC Display Gain

O.1

3.53

7.06

8.25

0.45

15.9

31.8

37.1

0.80

28.2

56.5

66.0
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FIG. IV-11 Y-AXlS PERFORMANCE AS A FUNCTION OF COMMAND-SIGNAL DELAY
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to the display gain defined earlier, that is, the ratio of the peak

command to the signal for full scale on the displays. The three runs

for each set of conditions have been averaged for clarity. Samples of

the actual y-axis run for Fig. IV-11 are shown in Fig. IV-12.

For all nine combinations of display gain and cutoff frequency, each

run shows a well defined minimum error for a delay of 0.2 to 0.3 second

for the scope display, and 0.4 to 0.5 second for the quantized displays.

Subsequent experiments could determine whether this difference is intrinsic

to the human operator or merely an artifact introduced by the 150-msec

sampling time of the quantizing instrumentation.

The error reduction factor, the ratio of integral squared error with

no delay to that at the appropriate minimum, is greater at high cutoff

frequencies, being as high as 2.5 in one case where a reduction from 95

percent to 38 percent was obtained. Assuming a pure delay in the

operator transfer function, this phenomena can be explained by the pres-

ence of the higher frequency components in the command signal. Without

the appropriate delay, the phase shift, and consequently the error, is

greater for these components and therefore contributes significantly to

the total error.

The error values for each run at the appropriate minima, averaged

for each mode and plotted as functions of gain and cutoff frequency, are

shown in Figs. IV-13 and IV-14. In the scope display, gain does not

appear to have any great affect on the minimum error. For all three

cutoff frequencies, however, the intermediate gain setting is the worst.

It was pointed out previously that at high gains, tracking relies heavily

on directional information, since the signal is theoretically off scale

most of the time. Perhaps the intermediate gain setting offers neither

the advantage of accurate magnitude information obtained at low gain nor

the purely directional information obtained at high gain.

Most of the discrete mode runs show a reduction in error on going

from low to intermediate gains, presumably because of the information

lost by quantization at low amplitudes. In only one case is there an

increase in error at high-gain settings, indicating once more the

importance of directional information.
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All but one run show increasing error with cutoff frequency, the

effect being more pronounced with the discrete displays.

It is interesting to note that with the appropriate delay inserted,

the integral mean-squared error is generally below 50 percent and never

exceeds 67 percent, showing that even at high gains and cutoff frequencies

there is a significant degree of tracking.

In previous experiments (Fig. IV-4) it was observed that the error

does not accumulate smoothly but in a series of jumps corresponding to

peak values in the command signal. The effect of introducing the delay

can be seen in Figs. IV-15 and IV-16. In Fig. IV-15, each curve shows

the integral squared error as a function of time for various delays.

The same 18-second section of a run recorded at high gain and cutoff

was used, and the corresponding command signal is also given. The effect

of the delay in reducing the size of the jumps is clear. The actual error

(the difference between command and response) for the same section with

no delay and with a delay of 0.3 second (the value corresponding to the

minimum) is shown in Fig. IV-16. The error curve becomes much less

"peaky", which has a very marked effect on the squared error computed

before integrating.

DIVISION OF CLEYITE CORPORATION CLEVELAND

:3==to.Isect_=_

OHIO PRINTED IN t_.$,A.

COMMAND

r

5mm/sec

FIG. IV-15 INTEGRAL SQUARED ERROR vs. TIME

IVOLT/CHART LINE

TA-465S-14
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FIG. IV-16 ERROR WITH AND WITHOUT DELAYED COMMAND

F. Discussion

From a practical standpoint, performance with the tactile and dis-

crete visual displays was approximately equal. Moreover, except for an

additional delay that may be attributed to the time sampling of the error

by the equipment, the minimum mean-squared error obtained with both dis-

crete displays was not more than a factor of 3 higher than that obtained

with the continuous visual display, under any of the display-gain and

command-signal-bandwidth conditions. In fact, with low command-signal

bandwidth and high display gain, minimum mean-squared error obtained

with both discrete displays was almost equal (but delayed more) to that

obtained with the continuous display.

Comparing performance with the tactile and discrete visual displays

more closely, we find consistent differences as the display gain and

command-signal bandwidth are varied. Performance with both discrete dis-

plays was remarkably equal for all three display-gain settings at the

lowest command-signal bandwidth. Also, at the highest display-gain set-

ting, minimum mean-squared error increased at an increasing rate with

command-signal bandwidth for both discrete displays. Upon viewing these

data in the matrix shown in Table IV-2, performance with both discrete

displays was almost equal along the low command-signal-bandwidth row

and the high display-gain column, but was increasingly different as the

low display-gain and high command-signal-bandwidth condition is

approached.
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Table IV-2

MINIMUM MEAN SQUARED ERROR WITH THE DISCRETE DISPLAYS

Command

Signal

Bandwidth

(cps)

0.16

0.64

i. 05

0.I

14.

16q o

@
44*

40 q)

@
43*

67 q°

G

DC Display Gain

0.45

16"

15q °

Q
36*

28 qo

@
43*

56 q_

Q

0.8

13"

14cP

@
23*

27 _

@
51"

55 _

@

* Airjet display

Light display

O Difference

A possible interpretation of these results may be related to the

improved magnitude information afforded by the anatomical reference given

in the tactile display but not in the visual display. Recall that in

the tactile experiments a center reference was maintained on the tip of

the nose, but in the visual display experlments, no fixed center refer-

ence, such as a unique light, was provided. With this assumption, the

discrete tactile display would be superior to the discrete visual display

whenever detailed magnitude information is present, as occurs with low

display galn and high command bandwidth.
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To interpret the command-signal delay which resulted in a minimum

of mean-squared error, note that the command signal c(t) was a sum of

sinusoids

c(t) = Z c. sin _ t (IV-l)
i i i

th
where c i is the magnitude of the i command-signal sinusoid and w i is

th
the frequency of the i command-signal sinusoid. If it is assumed that

the response r(t) is a sum of the same sinusoids plus a remnant, then

r(t) = _i r.1 sin (_it + _i) + n(t) (IV-2)

tn
Where r. is the magnitude of the i response sinusoid

1
th

w i is tne frequency of the i response sinuso_d
th

_i is the phase of the i response sinusoid

and n(t) is the remnant.

The analysis procedure was to delay the command with respect to the

sinusoid and compute mean-squared error for each value of delay. Since

this error e(t,6) is given by

e(t,5) = c(t-5) - r(t) , (IV-3)

where 6 is the delay, a minimum in mean-squared error implies that the

following is identically zero:

E c.r._, sin @.5 - _i ) = 0 (IV-4)
i 111 1o

where 6 is the delay for minimum mean-squared error.
O

In any specific example, 6 can be related to an assumed model for
O

the human's transfer function. For example, if the transfer function for

the human operator were simply a pure delay, then _i would be proportional

to _i' so that Eq. IV-4 could be satisfied with every term identically

zero, or 6 ° = _i/_i, which is equal to the closed-loop transfer function
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delay. With more complex models, however, each term in Eq. IV-1 would

not be zero, and 6 o would generally depend on ci, ri, and _i' as well

as _i"

The results of the experiments discussed in this section were

incorporated in the design of the tracking equipment described in

Appendix G.
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V PHENOME NOLOG ICAL OBSERVATIONS

To build useful models we must assemble a great quantity of data.

To a certain degree we can distinguish two kinds of data, qualitative

(or phenomenological), and quantitative. Reliable, quantitative results

are costly to obtain both in time and effort. Therefore, the experiments

selected for quantitative analysis must be carefully chosen. To help make

these selection_, it is often useful to review the results of many simple

short experiments (perhaps even those not very well controlled), in which

the responses are highly subjective.

In this section we will give some examples of this type of subjective,

qualitative experiment. There is little past experience on which to base

experiments involving perception of a large array of stimulation points.

The experiments given here were primarily attempts to obtain insight into

the types of responses to expect from pattern stimulation. There was thus

no attempt to be quantitative, and there is no special scheme or order to

the presentation. In Section VI we present the results from some quanti-

tative experiments.

The members of this project were the subjects in these qualitative

experiments. None had any significant previous experience as subjects in

tactual psychophysical experiments of this type. The patterns were generally

presented on the forehead or fingers. The general approach in these experi-

ments was to present the subject with a pattern and ask him to describe the

perceived pattern by drawing a sketch. As we will see, when the subject is

presented with an unknown stimulus pattern, the perceived patterns can vary

widely. We will not attempt to report all the forms of response, but will

highlight some of the more obvious features. The stimulus patterns dis-

cussed in this section are shown in Fig. V-I.

A. Modes of Presentation

Three different modes of presentation were used in these experiments:

(i) point scan, (2) line scan, and (3) frame scan. (See the glossary and
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Appendix E for discussion of these modes.) All the experiments commented

o11 here were run at a basic rate of 25 milliseconds per step. To "point

scan" an entire pattern at this rate would require (25 × 96), or approxi-

mately 2.5 seconds. To "line scan" an entire pattern would take only

(25 × 8), or 0.2 second.

As to the duration of stimulation, there are two possibilities, re-

ferred to as "line reset" and "frame reset." With line reset, each row

of stimulators is cleared before the next row is energized. Hence, in

line scan mode with line reset, all of the energized stimulators in one

row are cleared before the next row is energized. In point scan with

line reset, only a single stimulator can be energized at a time.

With frame reset, all triggered stimulators remain energized until

the pattern is completely scanned vertically. Thus, where a single

vertical-line pattern is presented with frame reset in line scan mode,

the triggered stimulator in the appropriate column of the first row re-

mains energized for eight units of time, the stimulator in the second

row of the same column remains energized for seven units of time, and so

on until in the bottom row, the stimulator remains energized for only a

single unit of time. In other words, all stimulators are reset simulta-

neously, but they are energized progressively. This mode of reset is

not often used, and unless otherwise stated, line reset should be assumed.

With point scan and frame reset, the same holds true for each column.

In other words, it takes twelve vertical scans to point scan an entire

pattern. The first time through, only the first column of stimulators is

energized; the second time through, the second column is energized, and

so on until the twelfth time through, when the last column is energized.

Thus, the mode of presentation would be the same whether a vertical line

were point scanned or line scanned. For a horizontal line, however,

presentation would be very different. On line scan all points would be

presented simultaneously, whereas on point scan they would be presented

one at a time starting from the left.
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B. Apparent Position

From previous results with apparent-position experiments (Kotovski
0

and Bliss, 1963) we speculated that perception might be different when

scanning an angle toward its apex than when scanning it away from its

apex. This proved to be so. Patterns A and B (Fig. V-l) were used to

test this notion. Consider a point-scan presentation of the first pattern.

To be sure that the method of scanning is clear, we will consider the

timing of the stimulators. The top left stimulator is energized first,

let us say at time inverval I. The scanning point moves vertically down-

ward but finds no other stimulators to be energized in this column. Eight

units of time later, or at time interval 9, the stimulator marked 9 is

energized. As the scanning point moves vertically downward, it immedi-

ately encounters the next stimulator and energizes it at time i0. As the

scan reaches the top of the third column, at time interval 17, it ener-

gizes that stimulator, and so on.

When pattern A was presented in this fashion, on the hand or fore-

head, the resulting sensation had the form sketched in Fig. V-2(a).

Points 9 and i0 are sufficiently close in space and time to be perceived

as a single point between them; the same was true for points 17 and 19.

In other words, a certain number of columns must be scanned before the

single "apparent-position" line is perceived as two separate lines.

On the other hand, pattern B was easily perceived as two separate

lines converging toward an apex, although the region near the apex often

appeared curved, as indicated in Fig. ¥-2(b), or even more potbellied, as

in Fig. V-2(c). The angle was generally perceived as being considerably

less than 45 degrees.

When either pattern A or pattern B was presented with frame reset,

the horizontal line remained energized longer and felt considerably

stronger than the other line forming the angle.

The same apparent position effect resulted when the 90-degree angle

of pattern C was line scanned so that point a was presented first, then

points b and c simultaneously, followed by points d and e simultaneously,

and so on. The pattern was often perceived as a single line extending

part way down the middle and then separation into two distinct lines.
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(a) (b)

FIG. V-2 SKETCHED RESPONSES

(a) Pattern A

(b)(c) Pattern B

(c)
RA-4719-3

C. Losing Corners

In general, we have found that corners are perceived as rounded.

For example, pattern D, with either point scan or line scan, was gener-

ally reported as a straight sloping line or a line with a bit of rounding

on the end, as sketched in Fig. V-3(a). Pattern E, whether presented in

line scan or point scan mode, was also often reported as rounded, as sug-

gested in Fig. V-3(b).

We have not yet determined whether with training and learning, a

corner can be sensed as a corner. In any case, on the basis of these

results it was suspected that a letter "T" (pattern F) presented in

point scan might be sensed as shown in Fig. V-4(a). In this scan mode,

the left portion of the horizontal line was presented first, followed by

the vertical line. It was thought that this 90-degree segment might be

(a) (b)

RA'4719-3&

FIG. V-3 SKETCHED RESPONSES

(a) Pattern D

(b) Pattern E
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(o) (b)
RA-4719-3B

FIG. V-4 SKETCHED RESPONSE TO PATTERN F

sensed as curved, as suggested, with the right section tacked on. The

resulting impression was indeed of this form, except for the perception

of an additional line, as shown in Fig. V-4(b), which felt very much

like a "retrace line." The sensation of a retrace line is caused by the

apparent motion phenomenon.

D. Apparent Motion

The perception of apparent motion depends upon there being certain

time delays between the excitation of different stimulators. (The reader

is referred to Kotovski and Bliss, 1963 for details about the range of

delay required as a function of separation of the points.) Generally,

50 to 150 msec delay between the excitation of two stimulators, say an

inch apart on the forehead, will give a strong impression of apparent

motion.

Apparent motion can occur with line scan as well as point scan. For

example, consider a pattern of only two stimulator points separated by

five lines in the same column. In this case, the presentation in point

scan mode will be identical to that in the line scan; the second point

will appear (6 × 25) or 150 msec after the first (assuming a scan rate

of 25 msec per vertical position), and a strong apparent motion effect

will be felt with either mode.

Although apparent motion effects occur with both types of scan,

they are generally more common with point scan. To see why this is so,

consider pattern G, which can be thought to consist of three horizontal

lines. With line scan, the impression is essentially just that--three
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S
(o) (b)

RA-4719-3C

FIG. V-5 SKETCHED RESPONSES SHOWING

EFFECTS OF APPARENT MOTION

(a) Pattern A

(b) Pattern B

horizontal lines. During time

interval 2 (corresponding to

the second row), the first hori-

zontal line is presented; during

time interval 5, the second line

is presented; and during interval

8, the third line is presented.

With line scan there is essen-

tially no perception of apparent

motion. With point scan, how-

ever, the pattern is presented in the order indicated by the alphabetical

labelling of the points. Point a is presented first. Six intervals of

time (or 150 msec) later point b is presented, and a strong apparent-

motion line is sensed• Five intervals of time (or 125 msec) later,

point c is presented, giving an additional apparent-motion effect from

point b to point c. After another 125 msec, point d is presented, so

that there appears to be a continuous line of motion from point b to

point d. Often, then, this presentation results in the perception of a

saw-tooth pattern consisting of vertical lines and sloping interconnecting

diagonals. By "often" we mean that one does not perceive the same pattern

each time; there are effects of learning and "selective perception," which

are discussed in later sections.

We might note that the sketches of Figs. V-2(a) and (b) really repre-

sent the envelopes or outlines of the actual perceptions. The more usual

perception report includes apparent motion effects, as indicated in

Figs. V-5(a) and (b), which correspond to patterns A and B, respectively.

E. Three-Dimensonal , Apparent-Motion Effects

Although apparent-motion effects can be obtained with just two stimu-

lators, the effect is considerably improved when three stimulators are

energized in sequence, e.g., the stimulators A, B, and C in Fig. V-6(a).

It was interesting to speculate whether apparent-position and apparent-

motion effects could be combined to give a sort of volumetric sensation,

i.e., a line of motions felt within rather than on the body surface. To
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test this notion, apparent-motion stimuli were simultaneously presented

to two sides of a finger, as illustrated in Fig. V-6(b). The sensation

was indeed that of a broadened line traveling through the center of the

finger. If the stimulators were offset spatially and energized sequen-

tially, then the effect was that of a zig-zag line running through the

finger, as shown in Fig. V-6(c).

(a)

C' B' A'_..

(b)

, A'
C' 8 ,

(c)
RA- 646,54t- 37

FIG. V-6 STIMULATION FOR VOLUMETRIC PERCEPTION

F. Repetitive Presentation

In addition to perceptual patterns achieved from presentation of a

single pattern, other effects can be achieved if this same pattern is

presented repetitively in rapid sequence. For example, a response to

pattern H, presented a single time in line scan mode, is sketched in

Fig. V-7(a). It is interesting that even though the points of the bottom

horizontal line are presented simultaneously, the overall perception is

one of two curved sections extending from the initial vertical line.
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(a) (b)

RA-4719-SD

FIG. V-7 SKETCHED RESPONSES TO PATTERN H

(a) Single presentation

(b) Repetitive presentation

This effect agrees with the results already indicated in the discussion

of "losing corners." In any case, if pattern H is repeated rapidly a

number of times, then the perception changes to that shown in Fig. V-7(b),

in which strong retrace lines appear, the overall pattern being one of

smooth, continuous lines, as shown.

G. Illusions

Patterns I and J were used to test the tactual response to these

familiar optical-illusion patterns. After one became familiar with these

patterns on the skin, the horizontal line did indeed feel shorter in the

more compact pattern I. In pattern J, a typical response on line scan

was that the ends were curved, as indicated in Fig. V-8(a). This result

led to the speculation that if a curved end fits within the actual tri-

angular region of the stimulus pattern, as suggested in Fig. Y-8(b), then

the horizontal line might appear to be lengthened. To test this effect,

<
(b)

(a)
• ._. i a

(¢)
RA-471g-4

FIG. V-8 SKETCHED RESPONSE TO PATTERN J

94



the patterns K and L were used, K being the same as pattern J except that

it was simplified by elimination of the left end. Pattern L is simply a

horizontal line of exactly the same length as the horizontal portion of

pattern K. The result was as expected; the horizontal line appeared longer

in pattern K, apparently being lengthened by the curved end, although some-

times the section of line close to the curved end appeared somewhat weaker

than the more removed portions of the horizontal line.

H. Ambiguity and Learning

Often, initial responses to an unknown pattern hardly resemble the

actual stimulus. For example, Figs. V-9 and V-IO show some of the exact

initial responses to patterns I and J, respectively, which were presented

in point scan mode. Note the apparent-motion effects indicated by the

sketched-in, saw-tooth lines. Before the subject was informed what the

patterns actually were, they were so undefined in his mind that he could

hardly tell one from the other, and if an actual test had been run, he

(a) (b) (c)
RA-4719-4A

FIG. V-9 INITIAL SKETCHED RESPONSES TO PATTERN I

(b) (c)
RA "4719-4e

FIG. V-10 INITIAL SKETCHED RESPONSES TO PATTERN J
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probably would have scored poorly on a forced-choice experiment in which

the two patterns were shown over and over in random sequence. After

being shown the stimulus patterns, however, he could immediately "see"

the pattern as that being presented; but, more important, in the same

hypothetical forced-choice experiment with just these two patterns, he

J
(a) (b)

RA-4719-4C

FIG. V-11 INITIAL SKETCHED

RESPONSES TO

PATTERN M

I. Selective Perception

would probably have scored i00 per-

cent (although, again, no test was

actually run).

Actually, the same results are

obtained with most patterns, even

the "simpler" ones, such as the in-

verted Y (pattern M). Some initial

responses to this pattern, presented

in line scan mode, are sketched in

Fig. V-II.

We are all familiar with the type of three-dimensional optical il-

lusion in which a pattern can be perceived from either one perspective

or its inverse. This type of "selective perception" was noted during

the initial tactual experiments. For example, during stimulation with

the inverted V (pattern C), if a subject tried to be as objective as

possible about what he felt, then even though he knew the exact pattern

being presented, he would draw the sketch shown in Fig. V-7(a). However,

if he introspected, with some thought such as, "I know they are straight

lines, why don't I feel it that way?" he would "force" himself to feel a

good straight-line version of the stimulus pattern. If he then tried to

"shake the thought out of himself" and become "objective" again, he would

sense the original curved pattern.

J. Discussion of Section V, "Phenomenological Observations"

The qualitative nature of the material in this section should leave

little doubt that the results are only preliminary. The purpose of pre-

senting them is simply to relate a range of diverse subjective observa-

tions. Hopefully, these observations will be explainable on the basis

of models derived from more quantitative studies.
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VI QUANTITATIVE STUDIES

A. Introduction

In this section we will report the results of three studies which

are more objective and quantitative than the very subjective experiments

of the previous section. The first experiment was motivated by results

from the study reported in Section III, in which it was noted that there

was considerable improvement in performance with the moving Times Square

display than with the static frame presentation. The study reported

T, . . ,,

here is a quantitative study of the effect of deliberate pattern jltter,

or movement, on performance. The results indicate conclusively that

movement significantly improves performance. From an analysis of vari-

ance we see that the results are statistically significant, and we find

an empirical relation between frequency o:f rotational movement (amplitude

remaining fixed) and ........._lu±u_ presentation time

The second study was motivated primarily by tracking studies, par-

ticularly methods of displaying an analog quantity. This study was con-

cerned with the accuracy with which a single analog quantity could be

transmitted tactually, and, more particularly, the effect of a number

of different presentation methods. For each method of presentation a

confusion matrix was obtained, which was analyzed by information theory

techniques to derive an expression for the number of bits per presenta-

tion. Depending on the presentation method, from 1.3 to 2.1 bits per

presentation were obtained, which quantitatively illustrates the relative

advantage of certain methods. The highest magnitude of bits per presen-

tation obtained is in the same range as that obtained for vision and

audition when only a single stimulus dimension is varied.

During the past ten years the theory of signal detection has made

important contributions to our understanding of man's ability to detect

and recognize acoustic signals (Swets, 1964). However, there has been

little application of this theory to the study of tactual perception,

although Eijkman and Vendrik (reprinted in Swets, 1964) obtained inter-

esting results in the study of "amplitude" discriminations for the
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sensations of touch and warmth. In the third quantitative study reported

here, we wished to investigate the feasibility of applying the theory of

signal detection to a study of man's ability to discriminate between

different loci of tactual stimulation. We found that the theory of sig-

nal detection does predict the results and that the results of these

limited studies are sufficiently promising to warrant further investiga-

tion of the theory of signal detection as a potential tool for increasing

our understanding of tactual perception.

B. Effect of Stimulus Pattern Movement

It was noted in Sections II and III that there was a considerable

improvement when the relatively complex capital-letter forms were made

to move across the skin in the Times Square mode. But there is only a

finite range of propagation velocity over which a smooth sensation is

felt and an improvement is achieved. If the velocity is too slow, the

perception is simply that of a letter being presented a number of times

in different positions, and there is no overall improvement. Too high

a velocity, and performance again deteriorates, partly because the

total presentation time is too short.

To study this spatial-temporal interaction further, it was decided

to use a different mode of stimulus pattern movement, namely a small

circular translation (or nutation). In this mode, the entire pattern

is simultaneously translated about a small circular locus (compared to

the size of the array), so that each activated jet follows a circular

locus on the skin. By changing the diameter of the circular path, the

velocity of the rotational motion, or the frequency of the air jets, we

obtain a fairly wide range of parameter conditions. Except for a slight

increase in the excited area because of the movement, the pattern remains

fixed over the same anatomical position. Thus, we can readily get a

measure of performance with and without motion over the same position.

There were three other reasons for interest in this particular

stimulus movement. First, it is reminiscent of vibrations in the eye,

which are important for continuous vision. It is well known that if

these eye vibrations are effectively cancelled, as in "stabilized image"
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experiments, then vision rather quickly fades. Moreover, Krauskopf

(1957), who introduced controlled motion in visual stabilized-image

experiments, reported some improvement in acuity for oscillations at

frequencies below 10 cps and of sufficient amplitude.

Second, if one tries to read lettering through a piece of shattered

glass, where the average size of the intact glass is smaller than the

letter size (e.g., through the ends of a stack of microscope slides),

then significant improvement is achieved simply by vibrating the shat-

tered glass in its own plane. In this way the distortion introduced by

the fine structure of the shattered glass is averaged out. (Less im-

provement is obtained if the source material is vibrated instead of the

glass.) For our tactual perception experiments it was felt that since

the overall tactual pictures are not more than a half-dozen or so two-

point limen distances (i.e., close to the limit of spatial resolution

on the skin), then the effects of distortion introduced by nonuniform

afferent receptor fields might similarly be averaged out by vibrating

the pattern over the skin.

Thirdly, there is some neurophysiological evidence which suggests

that tactual perception should be improved with pattern vibration. For

example, from a study of cortical recordings, Mountcastle (1957, page 410)

observed:

"It is a common observation quickly confirmed that

tactile sensation is more acute if the exploring finger

pad moves lightly over the test surface than if held mo-

tionless against it--for example, in differentiating fine

grades of sandpaper, in the finger movements of the blind

in reading Braille, or in assaying the quality of cloth.

Oscillatory movement of the sensory receptor sheet will

produce sharper peaks in the grid of cortical activity,

with steeper gradients between them. Temporal alterna-

tion in the activity of two widely overlapped groups of

cells will accentuate the role of refractoriness of those

cells common to both, rather than spatial facilitation,

thus greatly steepening the gradients of activity between

the two peaks."

Four experiments were performed as described below.

(1) The first experiment was strictly exploratory. A subject

who had been trained on the Times Square display with the

99



special alphabet was presented the same characters

statically (i.e., in the frame mode) and an attempt

was made to see if display movement would aid in per-

ception. The subjective results were definitely

positive.

(2) In the second experiment a new subject was trained on

the special alphabet. During the training sessions

the static and "jittered" patterns were used alternately.

The quantitative results clearly showed an advantage

with the "jittered" mode.

(3) The results from the second experiment were sufficiently

positive that a third experiment was performed to ob-

tain a more quantitative study of the effects of

stimulus-pattern presentation time and pattern rotation

frequency. An empirical relation among performance,

presentation time, and rotation frequency was determined.

(4) In the fourth experiment, the effect of stimulus-pattern

rotation amplitude was studied.

To vibrate the display, a simple variable-speed motor pulley system

was built. The display speed could be adjusted between 0 and 1500 rpm,

and the coupling between the motor and display could be varied so that

the diameter of the rotational motion of the display could be adjusted

between zero and 4 cm. The spacing between the jets in the display was

1/4 inch. For these experiments the air jets were all synchronized and

their frequency adjusted to 200 cps. The subjects suspended their right

middle fingers and forefingers over the matrix, with the arm and palm of

the hand supporte_by a rest.

The three subjects used in the experiments were recent high-school

graduates, who appeared to be of above-average intelligence and unusual

calmness in the testing situation.

The specially designed alphabetic symbols shown in Fig. III-3 were

used as the stimulus pattern in all experiments except Experiment 4. In

Experiment 4, rotation amplitude, the block letters shown in Fig. II-4

were used.

i. Experiment l--Explorator_ _

The first moving-stimulus experiment was of an exploratory nature

and was performed on Subject 4 ($4). The purpose was to obtain a

_e This experiment was performed and reported by K. Kotovsky.
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subjective appraisal, by the subject, of the value of moving the letters

upon presentation versus the value of a snapshot "frame" presentation in

which the letter does not move relative to the skin. An attempt was

also made to obtain an idea of the effects of different amplitudes and

frequencies of motion. The presentation consisted of a letter of 1/2-

second duration, a space of 1/2-second duration, a letter, and so on.

The average letter presentation rate was therefore 1 letter per second.

The subject had been thoroughly trained (20 hours) on the Times Square

presentation of the specially-designed letter alphabet (see Section III,

Fig. III-S). The results of this experiment are presented in Table VI-I.

A conclusion from this table is that the subject generally preferred a

certain amount of motion, and that the larger the diameter of the vibra-

tion the lower the optimum rotation velocity. The subjective report was

that motion presentations at the "good" or "best" settings were much

preferable to the no-motion presentations, This preference did not,

however, result in improved performance in the tests described below.

At the end of Experiment 1 the subject's ability to "read" random

letters was tested for one minute with static-frame presentation and for

one-minute with motion presentation at an amplitude of 0.9 cm and a dis-

play speed of 900 rpm. No significant difference in the performance was

noted between the two modes of presentation. The amount of testing was,

however, necessarily minimal because of time problems. Two of the

experimenters noted (as did the subject) that when a letter was presented

with motion, it felt solid, unmoving, and "stronger" than when presented

without motion.

Table VI-I

SUBJECTIVE REPORTS ON VARIOUS CONDITIONS OF STIMULUS PATTERN MOVEMENT

Diameter of

Rotation

0.3 cm

0.8 cm

1.3 cm

2.5 cm

Best

> 1500 rpm

900 rpm

250 rpm

120 rpm

Good

< 1500 rpm

> 300 rpm

120-900 rpm

Poor

(unintelligible

letters)

< 300 rpm

> 1300 rpm

> 900 rpm
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2. Experiment 2--Learning and Response Factors _*

The results of the first exploratory experiment prompted the under-

taking of a more extensive series of experiments with a new, untrained

subject ($9). The first of these experiments was concerned with the

effect of motion on the ability of a tactually naive subject to learn

to read symbolic letters from the airjet matrix.

a. Sessions 1-21

Learning and testing sessions of approximately one hour's dura-

tion were conducted with Subject 9. The first session was concerned

with ascertaining that the subject had learned (from flashcards) the

symbolic alphabet perfectly (i00 percent on three trials)_ and with his

picking out what felt like a "good" frequency and amplitude of rotational

motion of the matrix.

The frequency and amplitude selected were 0.8 cm and 14 revo-

lutions per second. The duration of a single exposure frame was 0.3 sec-

onds. (Thus, approximately four rotations occurred during each frame.)

For Sessions 2 through 9 there were five empty frames, or 1.5 seconds

between lettersj during which time the subject called out the letter he

had just received. This spacing corresponds to an overall letter rate

of 1.8 seconds per letter. In Sessions i0 and Ii there were only three

empty frames between letters, and in Sessions 12 and 13 there were only

two, making the effective letter presentation rates in these sessions

1.2 and 0.9 seconds per letter, respectively. The subject's responses

were checked against a master list of responses by the experimenter.

The letter sequences were changed for each test.

After Session i, a protocol which outlined the course of the

experimental hour-long sessions was initiated. The protocol (Table VI-2)

interspersed testing and learning periods with rests to minimize fatigue.

_ This experiment was designed and reported on by K. Kotovsky except for

Sessions 36-53.
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Repeated
three
times

Table VI-2

PROTOCOLFORSTIMULUSMOVEMENTEXPERIMENTS

Duration
Operation (minutes) Explanation

St imul at e

Rest

Test 1

Rest

Stimulate

Rest

Test 2

i

i

i- 2_

5

i0

I

1-2

Familiarization

Preparation for test

Obtain data

Combat fatigue

Learning

Preparation for test

Obtain data

_ Usually a fixed number of letters, namely 80,

was included in the test. Thus, when the

letter rate was increased in later experi-

ments) the test duration decreased.

The short rest immediately preceding each test enabled the

subject to prepare for the test. The number of tests permitted the

observation of learning and/or fatigue over the course of the hour.

Since the first test (No. i) in any session occurred at the beginning

of the session (after only one minute of familiarization) and the last

test (No. 4) occurred at the end of the session, a comparison of Test 1

in Session N with Test 4 in Session (N-l) yielded a measure of performance

difference, with no intervening learning. The possibility of complica-

tion due to intervening recovery from fatigue was alleviated by comparing

the hour's average of the four tests in Session N with that of the four

tests of Session N-I. But again, this measure was complicated by the

possibility that different amounts of learning might have occurred

within two consecutive sessions, in which case the measure might be

more an indication that more learning occurred in Session N than in

Session N-I rather than that performance was better with the mode of

stimulation used in Session N than with the mode used in Session N-I.

However, this in itself is interesting, and furthermore, the two measures

("first and last tests" and "averages") together do give a fairly good

picture of the effects of the intersession variable (motion vs no-motion).
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In some cases the computer was unavailable for completion of all four

tests within a session, but in no case were fewer than two tests com-

pleted per session. With the above exception, all of the sessions with

Subject 9 were run according to the protocol shown in Table VI-2.

The results of Sessions 2 through 13 constitute a learning

curve during which rotation and no-rotation sessions were alternated.

After Session 2, the sessions were alternated according to the following

sequence: rotation, rotation, no rotation, no rotation_ rotationp rota-

tion, and so on. The effect of this double alternation was to counter-

balance any possible morning vs afternoon effects on the subject's per-

formance, since two sessions were run per day. The results of this

experiment are shown in Figs. VI-I and VI-2, Sessions 2 through 13.

Figure VI-I gives the individual test scores and Fig. VI-2 shows the

average for each session. Here we see that when going from a motion to

a no-motion trial (Sessions 4 to 5, 8 to 9, and ii to 14) the subject's

performance decreased or remained constant (using as measures both the

comparison of the last and first tests and the comparison of session

averages), and that when going from no-motion to motion (Sessions 2 to 3,

6 to 7, i0 to Ii, and 12 to 13) the subject's performance increased

(again, according to both measures). These results lead to the conclu-

sion that the type of rotation of the stimulus array used here is effec-

tive in increasing performance during the learning of tactual reading

of a symbolic letter alphabet.

A simple sign test of whether performance increased, decreased

or remained constant when the modes of stimulation changed yielded a

tentative significance level beyond 0.01. This result is strengthened

by the fact that in the three cases where double alternation was used

with no change in the stimulus (e.g., going from a motion to a motion,

or a no-motion to a no-motion session), performance always increased,

This makes the finding that performance decreased (or, in one case re-

mained constant) when going from motion to no motion all the more sig-

nificant, since the decrease was evident even though it was imposed on

a learning curve which should have tended to conceal it.
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After Session 13, another space was dropped from between each

letter. The presentation was therefore letter, space, letter, space,

etc., at an average rate of 0.6 seconds per letter. This presentation

was maintained from Session 14 through Session 21 (Fig. VI-1 and -2).

It was found that (1) the subject's performance (both percent correct

and letters per second) decreased, and (2) the previously noted differ-

ence between motion and no motion completely disappeared. Thus, while

the average percent correct before Session 14 at 0.9 to 1.8 seconds per

letter, was 86.1 percent for all motion sessions and 76.6 percent for

all no-motion sessions, at 0.6 seconds per letter (Sessions 14 through

21), the average for all motion sessions was 39.7 percent correct, and

for all no-motion sessions, 39.5 percent correct.

Thus the fast letter rate completely obliterated the consistent

motion/no-motion difference previously found. The hypothesis was then

made that the reason for this variation was that at the faster rate, the

subject's great difficulty in responding rapidly enough became the limit-

ing factor in his performance, and that the sensory aspects of reading the

letter become relatively unimportant. The evidence for the response

difficulty was simply (i) that the subject missed long strings of let-

ters (as if once he became unsure of a letter he fell behind and was

lost for a while); (2) that he often failed to respond at all (which

had not happened before, even in the beginning of his learning); and

(S) that he often became tongue-tied, slurring or mispronouncing letters.

Attempts were then made to correct this hypothesized bias

towards response difficulties.

b. Sessions 22,23

The first attempt consisted of the same letter, space, letter,

presentation but allowed the subject to stop and start the presentation

at will. The results are shown in Figs. VI-I and VI-2, Sessions 22 and

2S. Here we see that while some improvement was obtained with motion,

it was (if real) small. During these two hours the subject did not im-

prove his performance at all over the previous 0.6-sec/letter sessions.

Part of the reason for this lack of improvement may have been that the
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subject did not stop the presentation more than five or six times per

test, and therefore may not have been able to exercise his privilege to

the best effect.

c. Sessions 24-25

The second attempt to circumvent the hypothesized response dif-

ficulty involved a slowdown to an average 0.9 seconds per letter and a

change in the configuration of the presentation. The subject was now

presented with three random letters in a row, followed by six spaces.

Thus, in the first 0.9 seconds he received three random letters; in the

next 1.8 seconds he was allowed to name the letters; and then he received

three more letters, six more spaces, and so on. The results of this ex-

periment are shown in Figs. VI-I and VI-2, Sessions 24 and 25. Under

these conditions, the performance was extremely poor. The fact that the

subject missed almost every middle letter of the triads suggests that some

type of masking was in part responsible for the poor performance. While

the middle letter miss rate was lower with motion than without, the over-

all performance did not differ, and we must conclude that motion made

no appreciable difference in the subject's ability to perform. One addi-

tional finding in these two triad sessions was that by considering a

response correct when it was out of proper sequence but in the proper

triad, the subject's performance in both sessions (after correcting for

guessing) was doubled. Thus, by counting KJP in response to PJA as two

letters correct (the P and J) instead of one (the J) the subject's accuracy

(corrected for guessing) increased from ii percent to 20 percent. This

is in agreement with the results reported by Kolers and Katzman (1963)

for a visual experiment in which the subject was asked to name sequentially-

presented English letters. At letter rates approximately only twice as

fast as the ones used in the tactual experiments described herein, and

in letter groups of three, it was found that letter reversal was a common

phenomenon. This similar finding, for both touch and vision, supports

the hypothesis that part of the problem in the triad experiment was, if

not a response difficulty, at least at a higher level than the immediate

sensory one; i.e., the letters were getting in but were jumbled. That

hypothesis does not adequately account for the fact that in Sessions 22
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and 23 (self-control of presentation), the subject did no better than in

previous sessions at 0.6 seconds per letter, and that in Sessions 24

and 25, even when out-of-sequence responses were counted as correct,

the accuracy was very poor. This is especially evident when Sessions 23

and 24 are compared with previous Sessions 12 and 13 and subsequent

Sessions 26 through 35, where the same letter rate (0.9 seconds per

letters) was used without grouping the letters.

In the letter_ space, letter, space sessions, the accuracy and

correct letter rate is about four times as great as that in the triad

experiment. Thus, a masking effect must be chiefly to blame when the

letters are run together (presented with no intervening empty frames.)

d. Sessions 26-35

After Session 25, because the subject had been responding for

so long (eleven sessions) at a relatively low level, and because the

motion/no-motion difference in performance had been lost, an attempt was

made to measure any loss of ability that had taken place and to ascertain

whether or not the motion/no-motion difference had been artifactual.

Thus, the conditions in effect in Sessions 13 and 14 just

prior to the drop in performance (namely, 0.9 second per letter) were

reinstated, since these conditions yielded the highest correct-letter

rate. The results are shown in Figs. VI-I and VI-2, Sessions 26-35. It

is obvious that while performance had been adversely affected by the

intervening eleven "bad" sessions, the motion�no-motion difference was

again apparent and reliable, and the subject again began to improve

his performance. It was tentatively concluded that the effects of motion

under fairly widely varying conditions of performance, presentation rate,

and state of learning increase the accuracy with which a subject can read

a tactually presented symbolic letter alphabet, but that these beneficial

effects can be obliterated under certain types of letter masking and

response difficulties.
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e. Sessions 36-53 _

These sessions were run to determine ±urther under what stimu-

lus conditions movement (jitter) of the stimulus apparatus improved the

performance of the subject. It was found that the motion/no-motion

difference was statistically significant_ that performance increased

with stimulus presentation time, but that forced response confounded the

results. (Because of this last effect, Experiment 3 was run, in which

the subject's response triggered the next stimulus.)

By this time the subject was highly practiced in making verbal

responses to a briefly presented stimulus. In each trial in these

sessions, a letter was presented to the subject, and 900 msec after the

onset of the stimulus, a new stimulus was presented.

Two factors were investigated: (i) motion versus no motion

of the stimulating apparatus, and (2) variation of the total revolutions

per presentation by variation of the presentation time (the rotation

frequency for each session is shown in Fig. VI-I along with the performance

scores). Thus, the fixed response time required the subject to respond

faster when stimulus presentation time was increased. However, during

any one experimental session, presentation time as well as the number of

revolutions per presentation were held constant. Each session consisted

of four test runs of approximately 90 trials each. The data were analyzed

according to a two-way analysis of variance; the results of this analysis

are shown in Table VI-3.

The results for the experimental sessions were analyzed accord-

ing to the equation

where

Yijk = _ +_ +_ +Yi +ei j j ijk

i = i, 2 indices for no motion and motion (factor I)

j = i, ..., 6 indices for revolution/letter (factor J)

_ This experiment was designed and reported on by S. Link.
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Table VI-3

ANALYSISOFVARIANCEFORSESSIONS36-53

Source

Motion vs

No Motion

Revolutions

per letter

Interaction

Error

Total

Sums of

Squares

78.65

96.35

73.25

187.28

435.53

df

1

Mean

Square

78.65

5

5

36

47

19.27

14.65

5.20

Level of

Significance

< .005

= .010

c_ < .050

Yijk

i

8j

Yij

eijk

= number of correct responses for test k in session (i,j)

= overall mean

= effect due to factor I

= effect due to factor J

= effect due to interaction of I and J

= error in measurement.

Considering the order of magnitude of the interactions (Table VI-3),

we cannot conclude that 7ij = 0. Hence, the response may not be strictly

linear in factors I and J (that is, the response is not additive in the

treatment effects). However, it may be safely concluded that averaged

over revolutions per letter, there is a significant (_ < 0.005) difference

between the motion versus no-motion methods of stimulus presentation.

Motion leads to a marked increase in the number of correct responses by

the subject.

The interpretation of factor J is somewhat more obscure.

First, large computed estimates of the linear and cubic components of

the variance suggest that there may be a nonlinear transformation of

the responses capable of reducing the interactions.
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However, it should be noticed that each session consists of a

different response time, confounded by changes in the number of revolu-

tions per letter of the airjet array. Consequently, although we can con-

clude (_ = 0.O1) that there are significant differences among the six

sessions, the differences exist only when the sessions are averaged over

all variations in revolutions per letter and presentation times.

To investigate the effect of forced response, several addi-

tional experimental sessions were run. Averaging the dependent variable

y given by

y = 0.023 + (correct letters per sec with motion)

- (correct letters per sec without motion)

resulted in the data shown in Fig. Vl-3.

0.20

0. I0

0

I I I I

I I I I
I00 200 300 400 500

PRESENTATION TIME_ msec
TA-4656-18

FIG. VI-3 EFFECT OF STIMULUS PRESENTATION TIME ON PERFORMANCE

For the range of values examined it appeared that the response

was linear with presentation time, although performance increased at a

decreasing rate owing to the subject's being forced to respond during a

shorter interval of time.
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Finally, an analysis of the frequency of occurrence of error-

error pairs on successive trials during a session was run to substantiate

the hypothesis that forced response resulted in a greater number of er-

rors, owing to the decrease in response times. It was found that error-

error pairs increased with presentation time and hence, increased with

reduced response time.

In summary, Sessions 36 through 53 indicated:

(i) Motion_ersus no motion) results in a substantial

increase in number of correct responses.

(2) The response was essentially a linearly increasing

function of presentation time over the range of

values examined.

(3) Forced response introduced unnecessary error into

the experiment.

These results suggested more careful control of the presenta-

tion factors as well as free response by the subject. Moreover, it sug-

gested that optimum response was directly related to presentation time

and revolutions per letter of the frame motion apparatus and could be

profitably explored to gain further insight into the perceptual mechanism.

3. Experiment 3--Effect of Stimulus Pattern rpm and Stimulus
Duration Time _

From the previous experiment it was concluded that a subject pre-

sented with a coded alphabet closely resembling the shapes of letters in

the English alphabet performed substantially better when the presentation

apparatus was made to translate along a circular locus. In order to

examine more carefully the influence of stimulus presentation time and

revolutions of the airjet frame, a complete quantitative factorial experi-

ment was designed.

Two subjects, $9 from the previous study and a new, untrained sub-

ject (SIO) were used. Subject i0 was given five 1-hour sessions of

training before beginning the experiment. The subject's task was to

identify letters presented tactually by the airjets of the frame motion

* This experiment was designed and reported on by S. Link.
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apparatus. Although the stimulus was carefully controlled, in this experi-

ment the subject was not forced to respond during a fixed length of time.

Eac.h subject made a verbal response, after which he operated a foot

switch, which allowed the computer to proceed with the next stimulus

presentation. Each experimental session consisted o£ a control test

followed by three tests under a new experimental condition. During both

control and exG_erimental tests, subjects were presented the alphabet

three times (i.e., a total of 78 letters) in a random order. Subjects

were given an arm and hand rest to facilitate relatively constant stimu-

lation of the same area o£ the hand.

Two factors, consisting of four levels of presentation time and

five levels o£ rpm, were replicated by each subject. Factor I, presen-

tation time, consisted of levels i00, 200, 300, and 400 msec, while

factor J, rpm, consisted o£ levels O, 200, 400, 800, and 1200. At the

beginning of each control session a test was run at 400 msec and 800 rpm.

The results for $9, the subject in the previous experiment, are

reported in Table VI-4. Since the control variable contained little

variation, it was not included in the analysis. Figs. VI-4 and VI-5

show the performance versus the amount of treatment. The variability of

the means is indicated by the dispersion of cell means about a column

mean. Again, the analysis o£ variance results from the equation

Yijk = _ + _i + _j + Yij + e.ljk

and is shown in Table VI-5.

Casual examination of the analysis indicates that the response is

linear with stimulus presentation time. In fact, computation of these

treatment effects, assuming only linearity, results in the data presented

in Table VI-6, where

h

_" = Yi.. - y
1 . . .

(period indicates an average over the index occurring in that

position)

and _._ = an estimate of _i based solely on the linear regression
i

coef£ ic ient.
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Table YI-4

DATA FROM STIMULUS MOVEMENT EXPERIMENT 3 FOR $9

[ENTRIES ARE MEANS OF NUMBER CORRECT (OUT OF A POSSIBLE 78)

FROM THREE TESTS]

Factor I

(ms ec )

I00 71.7

Factor

200

74.7

J (rpm)

400 800

76.3 73.3

77.3 74.3

1200

72.3

Row

Means

73.667

Treatment

Effects

(_i)

-!. 05

200 68.7 77.0 75.0 74.466 -0.25

300 72.3 75.3 73.3 76.0 76.7 74.733 0.02

400 74.6 76.3 77.0 76.0 76.0 76.000 1.28

Column Means 71.833 75.833 76.000 74.916 75.000 74.716 = overall means

Treatment

Effects -2.883 1.117 1.284 0.200 0.284

300 mmec
76 400 m=ec --

74 _ _--200 msec

i 72 I00 rnlec __70 _ o_OCOLUMN MEANS --

V
_68 [ 1 I I I 1
"' 0 200 400 800 _200
0.

REVOLUTIONS PER MINUTE
T&-4656 - 19

FIG. VI-4 PERFORMANCE AS A FUNCTION
OF RPM
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Table VI-5

ANALYSIS OF VARIANCE FOR EXPERIMENT 3

Source

Rows

linear

quadratic

cubic +

Columns

linear

quadratic

cubic

remainder

Interaction

Error

Total

df

3

1

i

i

4

I

i

i

i

12

40

Sums of

Squares

(42.183)

39.603

0.817

1.763

(135.933)

35.208

70.720

30.000

O.O05

100.733

91.333

Mean

Square

14.061

33. 983

59 370.183

8. 394

2.283

Level of

Significance

< 0.001

< 0.001

< 0.001
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msec

100

200

300

400

Table VI-6

TREATMENT EFFECTS

A

1

-1.05

-0.25

0.02

1.28

A

oti

-i .09

-0.36

0.28

1.09

Needless to say, except for exceedingly small variability, linearity

is obtained in this experiment as well as in the previous experiment.

Although the factor for rpm can be subjected to similar analysis, it

seems apparent that a third-degree equation will describe the average re-

sponse to increasing revolutions.

Similarly, careful analysis of interaction components might reveal

another source of variation in the response. However, examination of the

control variable indicates that most of the interaction can be removed

without affecting the results for treatment effects.

In summary, S9's response for the range of variables explored can be

described by an equation of the form

where

Yij = _ + _i + Bj

= an overall mean level of performance, characteristic

of the subject and the experimental treatments

ffi = kt, where k is a constant and t is stimulus presenta-
tion time

8j = Clb + c2 b2 + c363' where Cl, c2, and c 3 are constants

and b is the rpm.

Further analysis of the data can provide additional insight into the

functioning of the perceptual mechanism. More specifically, one could

provide an exact account of the operation of the mechanism under the
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range of conditions explored. One problem invariably faced in experiments

of this sort is variation of the perceptual mechanism versus variation of

the particular subject. An analysis of the data from one subject affords

no distinction between these different sources of variation. For this

reason a second subject participated under identical treatment conditions.

The data for SI0 were considerably more variable than those for $9.

These data are reported in Table VI-7 along with the values of the control

variate and the randomization scheme for assigning treatments. Although

Table VI-7

DATA FROM STIMULUS MOVEMENT EXPERIMENT 3 FOR SI0

Factor I

(msec)

i00

2OO

3OO

400

_j

7

74 70.3

4

73 67.3

6

75 74.6

18

76 72.3

-2.488

68

77

71

200

2

61.3

i0

73.6

19

74.6

13

77 77.3

-i .525

73

76

Factor J (rpm)

400

20

75.0

17

77.6

3

71 70

5

75 76.6

1.983

8O0

1

62 64.6

14

76 77.0

12

77 75.3

8

75 75.6

2.214

75

77

1200

9

72.3

15

76.6

16

77 75.6

ii

75 73.6

-0.18 2

ol
1

-0.597

-0.129

0.018

0.707

Per each cell:

Numbers appearing in upper right hand corner are session numbers.

Decimal entries are cell means for test scores.

Integer entries are values of the control variate.

an analysis of covariance fails to support the hypothesis of linearity,

examination of the randomization scheme versus the control variable

indicates that for SI0, considerable improvement in performance occurred

in the control variable up to Session I0. Hence, the lack of linearity

may be a failure of the subject to discriminate accurately in the mid-

range of the time variable during learning. Since similar effects confound
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the analysis of rpm, further analysis of these data seem premature.

At present, SI0 is being retrained to a high criterion of performance on

the control variable. Subsequently, he will replicate the initial ex-

perimental sessions.

4. Experiment 4--Effect of Amplitude of Stimulus Pattern Movement

In the previous experiment it was found that for $9, the optimum

setting of vibration frequency, for an amplitude setting of 0.8 cm, was

about 400 rpm. It was also found that performance increased linearly

with duration of stimulus over the range i00 to 400 milliseconds. In

this experiment we wished to evaluate the effect of amplitude variation.

The results we will see indicate that amplitudes in the range 0.4 to

0.8 cm for 400 rpm, and 0.4 to 2.5 cm for 200 rpm are about optimum.

In order to lower the percent accuracies below those of the previous

experiment and to reduce the effects of previous training, it was decided

to run this test using the block letter alphabet discussed in Section If,

Fig. II-4, rather than the specially designed alphabet used in the previous

experiment. As we noted earlier, the block letter alphabet is more dif-

ficult than the specially designed alphabet. In fact, the latter was

designed precisely because of difficulty with the block letters.

Subject 9 was given two hours training on the block letter alphabet,

which he had never felt before. Then he was given a series of tests with

different amplitude settings. Four tests were run for each amplitude

setting. The sequence of amplitude settings was chosen as the experiment

progressed. In Fig. VI-6 are plotted the results for each setting, the

spread in results for the four tests, and the average. The numbers next

to the plotted points indicate the sequence of these tests. The sequence

is significant because the subject was not very well trained before start-

ing the experiments, and therefore we might expect some learning during

the sequence. The relatively small extent of this learning can be seen

from the slightly increased performance between the first and last experi-

ment for the same conditions, namely 0.8 cm and 400 rpm.
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5. Discussion

From the results thus far, it is clear that rotational vibration

of the type described here improves performance. From Table VI-I, which

resulted from the first exploratory experiment, one gets the impression

that the "best" sensation occurs for a certain linear velocity of display

movement. Although these results are very rough it is quite clear that

the best frequency of vibration decreases monotonically as the amplitude

increases. As a tentative hypothesis, then, let us assume that the best

performance is obtained for a certain linear velocity of display. From

vibration frequency and amplitude, we can obtain an estimate of what this

velocity might be. A peak in performance for $9 was obtained for an am-

plitude of about 0.8 cm, a display rotation frequency of 400 rpm (or

150 msec per revolution), and a jet frequency of 200 pulses per second

(or a pulse every S msec). Thus, the pattern is repeated every 1S0/5 =

30 times during each revolution, or every 12 degrees of rotation° With

a path diameter of 0.8 cm, this frequency leads to a velocity along the

circular locus of about 15 cm/sec, which corresponds to what would be

obtained with the Times Square programs and the bimorph array operating

at 67 words per minute.

Additional experiments will be conducted to help formulate hypotheses

of what this velocity might correlate with, or to determine whether this

tentative hypothesis is even valid. It will be especially interesting if

the spatial and temporal results from these experiments can somehow be

connected with the sensory sampling times from tracking experiments.

The finding that performance is a linear function of stimulus pre-

sentation time over the range 100 to 400 msec agrees roughly with that

reported by Bliss and Massa (1961) for a kinesthetic-tactile experiment

and a visual experiment. Bliss and Massa found that while performance in

a kinesthetic-tactile task was logarithmic with stimulus presentation time

over the range of l0 to S00 msec, visual performance in the analogous ex-

periment reached a minimum at about 60 msec.
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C. Estimation of Stimulus Position and Physical Length

of Stimulus Pattern

In coding an analog parameter into a tactile display, for example

an error signal in tracking experiments, one needs to know what tech-

niques lead to the best performance. Therefore, some experiments were

designed to investigate the effects of number of stimulators, time de-

lays, and anatomical position on the ability of the subjects to dis-

tinguish eight stimuli representing eight different lengths or magnitudes.

These experiments were especially planned to aid in the development of

tracking displays such as those described in Appendices F and G.

These experiments were exploratory; only two to four subjects were

used in each case. The subjects were male with college education and

ranged in age from 20 to 36. Minimal training was given, perhaps five

minutes before each experiment. Thus, these experiments indicate only

initial performance for a wide range of stimulus conditions. This ap-

proach was taken primarily in an attempt to get some indication of which

stimulus conditions warranted further study.

i. Experimental Arrangement

The computer programs used were the Experimental Performance and

Line-Scan routines described in Appendix E. Masking noise was used in

all experiments to mask auditory cues. (An initial run without masking

noise gave roughly 0.3 bits more transmitted information per stimulus

than the same experiment with masking noise.) The subject was in a

separate room from the computer and experimenter. Each stimulator oper-

ated from an independent oscillator, and all the oscillators vibrated

in the range 70 to i00 cps. The air pressure into Airjet Stimulator

Arrayl was i0 psi.

2. Procedure

The letters "a" through "h" were used to designate the eight stimuli

as described later in this section. The experimenter presented each

stimulus by typing one of the letters "a" through "h" on the on-line

typewriter. The subject responded orally with the number i(l through 8)

which he thought corresponded to the stimulus, and the experimenter typed

this response. Thus, a typed record of each experiment was obtained.
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For training, the experimenter presented the stimulus sequence

designated by a - h twice. Then 30 or 40 stimuli were presented in a

random sequence. The subject attempted to identify each of these stimuli

and was told immediately if he was wrong. After this training, the ex-

periment was begun, during which the subject was not told whether he was

right or wrong. In each experiment, 10 presentations were made of each

stimulus in random order, so that a total of 80 stimuli were presented.

The stimulus location in the experiments was either the right index

finger or the forehead. The stimuli to the finger were collinear along

th_ ventral side of th= finger. For +_^ _-_-_ .......... were hori-....... _ _,,= _v_,,_d, the _,,u_

zontally collinear in the mid-forehead.

The responses from each experiment were transformed into a confusion

matrix. From these matrices, information measures were calculated ac-

cording to the following formulae given by Attneave (1959):

H(x) = estimate of average information in each stimulus

i
1

log n-- _ n i log n.
n 1

Q

H(y) = estimate of average information in each response

A

H(x,y)

= log n - -- n_ log n.
n j j

= estimate of average information in each stimulus-

response pair

1 i,j

log n - - _ n.. log n..
n iJ ij

_(x,y) estimate of the average transmitted information

or the average amount of information each response

gives about the stimulus

A A

= H(x) + H(y) - H(x,y)
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where

n = the total number of stimulus presentations

th
n. = the number of times the i stimulus was presented

i th
n. = the number of times the j response was received

J .th
n.. = the number of times the 1 stimulus was presented

ij and the jth response was received.

3. Experimental Results

Nine different sets of experimental conditions were tried. Seven

of these were tried on both the right index finger and the forehead.

Table VI-8 gives the transmitted information for each experiment,

Table VI-9 compares the finger experiments with the forehead experiments,

and Table VI-IO compares the performance obtained for the various stimulus

conditions. The experimental conditions for each experiment and comments

relative to each experiment are given below.

Table VI-8

TRANSMITTED INFORMATION

No. of Stimuli = 8 Stimulus Entropy = 3 bits

Stimulus Spacing = 1/4 in. L = 1, 2, 3, ..., 8

Experiment

No.

No. of
Anatomical

Stimulators
Position

Activated

1 Finger

1 Forehead

2 Finger

2 Forehead

2 Finger

2 Finger

2 Forehead

2 Finger

2 Forehead

2 Finger

2 Forehead

2 Finger

3 Finger

3 Forehead

L + i Finger

L + 1 Forehead

Stimulus I Time Stimulus

Duration Delay

(msec) (msec) Sequences

200 ....

200 ....

IOOL 100(L-I) Ref. last

IOOL 100(L-I) Ref. last

50L 50(L-I Ref. last!

200 I00 Ref. first

200 i00 Ref. first

200 I00 Ref. last

200 I00 Ref. last

200 0 --

200 0 --

200 I00 Repeated

200 0 --

200 0 --

200 0

200 0

Transmitted Information

(bits)

Subject

Average Average

S14 S15 $2 S14 + $2 S14 + S15 + $2

2.03 2.12 1.94 2.03 2.03

2.20 1.61 1.91

2.03 2.23 2.06 2.17 2.12

2.23 2.06 2.15

1.68 2.01 2.16 2.09 1.95

I
1.51 1.75 1.85: 1.80

1.61 1.51 1.42 1.47

1.44 !1.68 1.77 1.73

1.44 .52 1.68 1.60

1.55 .84 1.68 1.76

1.45 .79 1.87 1.83

1.47 1.48 2.01 1.75

0.86 1.66 1.30 1.48

1.43 1.13 1.28

1.42 1.86 1.63 1.75

1.76 1.76 1.76

1.70

1.63

1.51

1.69

1.70

1.65

1.27

1.64
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Table ¥I-9
COMPARISONOFTWOLOCATIONSFORTACTILESTIMULATION

Stimulus Spacing = 1/4 in.
Stimulus Entropy = 3 bits
Subjects: S15 and $2

Experiment i
Number

Finger 2.03

Forehead 1.91

Transmitted Information

2 3 4 5 6 7 8

2.17 -- 1.80 1.73 1.76 -- 1.48

2.15 -- 1.47 1.60 1.83 -- 1.28

9

1.75

1.76

Table VI-10

COMPARISON OF PERFORMANCE FOR VARIOUS STIMULUS CONDITIONS

Anatomical Position: Finger

Subjects: $2, S14, S15

Experiment

Number

2

1

3

4

6

7

9

5

8

Description

2 points

1 point

2 points

2 points

2 points

2 points

2 points

2 points

3 points

lO0 (L-l) msec delay

50 (L-l) msec delay

100-msec delay

Simultaneous

Repeated

Simultaneous

100-msee delay

Simultaneous

Ref. first

Ref. last

Average

Transmitted

Information

2.12

2.03

1.95

1.70

1.69

1.65

1.64

1.63

1.27
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Experi -

ment 1

Experi-

ment 2

Experi-

ment 3

Experi -

ment 4

Experi-

ment 5

Experi-

ment 6

Experi-

ment 7

Experi-

ment 8

Experi-

ment 9

EXPERIMENTAL CONDITIONS

One of eight collinear stimulators were

turned on for 200 msec. The stimulators

were spaced 1/4 inch on centers.

Two stimulators were turned on in time

sequence. The first stimulator was one

of the eight used in Experiment i. The

second stimulator turned on was always

a ninth or reference stimulator located

at the proximal end of the finger or the

right side of the forehead. The time

delay between the stimulators was propor-

tional to the distance between them ac-

cording to the relation, time delay in

msec equals 100(L-l), where L is an inte-

ger from I to 8 indicating the distance

between the stimulators. Thus there was

zero time delay between the activation

of the stimulators for a "1" stimulus.

This experiment was the same as 2 except

the time delay between the stimulators

was only half as long.

In this experiment two stimulators were

activated always with a I00 msec time

delay. The first stimulator activated

was always the reference at the proximal

end o£ the finger or the right side of

the forehead. The second stimulator

activated was one of eight equally spaced

stimulators along a llne.

This experiment is the same as 4 except

that the reference stimulator was pre-

sented last instead of first.

In this experiment, two stimulators were

activated simultaneously. One o£ the

two, the reference, was always the same.

This experiment is the same as 6 except

that the stimulus was repeated once

parallel to and 1/4 inch from the first

presentation.

In this experiment three stimulators were

activated simultaneously. The outside

stimulators were always the same and

served as a reference. The middle stimu-

lator was one of eight equally spaced

collinear stimulators.

In this experiment a "full line" was pre-

sented by activating simultaneously L + 1

stimulators, where L is one of the integers

(i) through (8). These stimulators were

equally spaced and collinear.

COMMENTS

The relatively high performance from presenting

only one point at a time indicates absolute
• e

position is probably the most important stlmulus

aspect in all of these experiments. Examination

of the errors obtained from this experiment in-

dicate that the stimulator spacing was approxi-

mately equal to the error of localization on the

finger and the forehead.

The stimuli in this experiment had two redundant

cues, space and time. The time cue added signifi-

cantly to the transmitted information (compare with

Experiment 5). Apparent motion was felt with

Stimulus 2 (time delay of 100 msec) but not with

Stimuli 3-8.

Apparent motion was felt for Stimuli 2 and 3 but

not for Stimuli 4-8.

Apparent motion was felt for all stimuli in this

experiment. The subjects reported that the appar-

ent motion was stronger on the finger than the

forehead. It was felt that presentation of the

reference stimulator first was better than last

since it seemed to warn or set the subject so

that attention could be focused on the data

stimulator.

In this experiment on the finger the reference

stimulator seemed to mask perception of the data

stimulator.

Simultaneous presentation of the two stimulators

seemed to mask the perception of the data bear-

ing stimulator. Apparent position was noticed

on Stimuli 1 and 2 but not on 3 to 8.

Repetition of the stimulus seemed to mask rather

than aid the perception.

In this experiment it was initially thought that

presentation of the end points would improve the

performance since the position of the middle

stimulator relative to the outside stimulators

could be estimated. Thus, a reference length

instead of a reference position was given the

subject. However, from the reduction in perform-

ance, it is evident that the reference stimula-

tors tended to mask the middle stimulator whose

position was judged on the basis of anatomy. In

fact, it was difficult to distinguish between

Stimulus 1 and Stimulus 8.

There were two redundant cues in this experi-

ment, location of the stimulators and inten-

sity, of stimulation. Comparing the results

with Experiment 6, the intensity of stimula-

tion cue did not increase the performance.
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4. Discussion

Results described by Attneave (page 72) from visual and auditory

experiments have shown "... that the information conveyed by stimuli

varying on a single dimension is likely to fall somewhere between 2 and

3 bits, and that increasing the number of alternative stimuli beyond the

minimum mathematically necessary to transmit this limited amount of in-

formation results in little or no improvement of transmission." These

results are from experiments to determine the amount of information

transmitted in absolute judgment of the pitch of pure tones or the posi-

tion of_ -_ pointe-_ _-._I_ a linear _=_"1 ...... ,,c see from Table VI-I that the

best transmission rate obtained in our experiments was better than two

bits per second, which is in the same range. Falling at the low end of

the 2- to 3-bit range might be due to the fact that the spacing of the

stimuli in these experiments, which was limited by the physical size of

the array, was comparable to the error of localization.

But a second point regarding redundancy must be noted. Eriksen

(Attneave, page 75) found a transmission of 4.1 bits for stimuli varying

in size, brightness, and hue (compared with an average of 2.7 for bits

for these attributes employed separately), even though the three attributes

were perfectly correlated with one another, so that any change in one al-

ways involved a concomitant change in each of the other two. Comparing

experiments 1 and 2 in Table VI-8, we see that redundancy (in this case,

stimulus duration) only added about 0.i bits of transmitted information,

implying that stimulus duration is not an effective information-bearing

parameter in this experiment.

Some other observations are:

(i) It is easier for subjects to identify different lengths

(coded into stimulus patterns) by estimating the positions

of a stimulator relative to parts of the anatomy than by

estimating the distance between two stimulators simul-

taneously activated or activated with a fixed delay.

2) If two stimulators are activated with a fixed time delay

between them, one stimulator representing a spatial

reference and the other representing a distance to that

reference, then better performance results when the

reference stimulator is activated first.
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(3) For airjet stimulation, the average error of localization

on the finger is about 1/4 inch.

(4) For a fixed stimulator spacing of 1/4 inch, the finger

is slightly better than the forehead.

These experiments were run quite early in the program. With the

increased insight gained since then, and with the vastly improved capa-

bility for running experiments, there would seem to be an advantage from

rerunning certain similar experiments. For example, it would be inter-

esting to examine the effect of stimulus pattern "jitter" on transmitted

information. Any quantitative results regarding spatial and temporal

effects from this type of experiment, in combination with results from

"jitter" experiments and tracking experiments, would be of the utmost

importance in developing models for tactile perception.

D. Signal Theory Approach to Two-Point Discrimination

The specific goals of this portion of the study were:

(i) To determine the relation between d' (a measure of the

observer's ability to distinguish between a pair of

stimuli) and the distance between the two stimuli.

(2) To obtain receiver operating characteristics (ROC curve),

which, in this case, is a plot of the observers proba-

bility of saying that two stimuli are different when

they did in fact impinge upon two different loci versus

his probability of saying that they were different when

they occurred at the same point.

(3) To determine if a model consistent with the theory of

ideal observers and with no restrictive assumptions

could be used to predict the absolute locations (not

solely the shape) of the ROC curves on the basis of

ABX data.

In the first case, it was hypothesized that a simple linear relation

would exist between d' and the distance between two stimuli. Because of

the additive nature of d', such a relationship would have strong predictive

potential. In the second case, it was hypothesized that the shapes of these

This experiment was designed, carried out, and reported by F. Clarke.
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ROC curves would be consistent with those found in audition. Such a

result would suggest that much of the theory of signal detection could

be applied to the study of tactual perception and would demonstrate the

importance of taking into account of the observer's criterion or bias in

measuring his ability to distinguish among tactual inputs. Because of

the basic importance of the ROC curve, it was obtained by two different

procedures, a rating procedure and a binary choice method. It was hypothe-

sized that both methods would result in the same ROC curve.

i. Procedure

A single observer, S16, was used throughout these feasibility studies.

The site of stimulation was the inner side of the forearm, approximately

midway between the wrist and elbow. Stimulation was provided by a nearly

identical pair of airier stimulators (described in Appendix B) located

3/8 inch from the surface of the skin. A single stimulus presentation

consisted of a train of eleven pulses with i0 msec between onsets. The

noise produced by the stimulators was masked by a low-frequency "grey"

noise presented to the observer over earphones.

a. ABX Experiment

Performance on an ABX task was studied as a function of distance

between stimulators. Five values of separation were used: 0.15, 0.90,

1.65, 2.40, and 3.15 cm. The two stimulators were arbitrarily labeled A

and B. On any given trial, one of the two was randomly chosen and acti-

vated; then the second stimulator was activated, and was followed by

either A or B (again randomly chosen). The task of the observer was to

give a response indicating whether the final stimulus was more similar to

the first or second stimulus preceding it. The time from onset to onset

of stimuli within a given trial was 900 msec. A given trial (stimulator A,

followed by stimulator B, followed by stimulator X, followed by the ob-

servers response) took 5.4 seconds. Trials were run in blocks of 50

followed by a rest period. Experimental conditions were changed after

every block with appropriate counterbalancing for possible order effects.

Prior to the recording of experimental data, the observer had approximately

29 hours of practice at this task. This rather excessive practice time
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was necessitated by our difficulties in finding a highly reliable pair

of matched stimulators. Experimental data consist of 500 observations

at each of the five distances between stimulators.

b. "Same-Different" Experiment--Binary Choice

In this experiment, the distance between the two stimulators

was held constant at 1.65 cm. A trial consisted of one of the following

four orders of presentation: AB, AA, BA, or BB. On any given trial the

order was chosen randomly. The task of the observer was to respond either

that the two stimulations were by the same stimulator or by different

stimulators. Because there were only two stimuli per trial, the trial

interval was shortened to approximately 4.5 seconds. The experimental

variable was the instruction under which the observer operated. On some

blocks of trials he was instructed to respond "same" only if he was very

sure that the stimuli did indeed arise from the same stimulator; other-

wise he was to respond "different." On other blocks of trials he was in-

structed to respond "different" only if he were very sure that this was

the correct response, and otherwise to respond "same." Under a third set

of instructions he was told to give his best guess as to whether or not

the two stimuli were generated by the same stimulator. After one and a

half hours practice on this task, data were recorded. The data obtained

consisted of 750 observations per data point, with conditions counter-

balanced to avoid systematic error owing to order effects.

c. "Same-Different" Experiment--Rating Scale

Stimuli were presented as in the binary-choice experiment above.

The observer's task was to respond "one" if he was very sure that the

stimuli were generated by the same stimulator, "two" if he thought this

was the case but was not sure, "three" if he thought different stimulators

were involved but was not sure, and "four" if he was very sure that dif-

ferent stimulators were used. Receiving operating characteristic ROC

curves for three different distances between simulators (0.90, 1.65 and

2.40 cm) were obtained. Data collection proceded following three hours

of practice on this task. The data consisted of 750 observations per

condition, with appropriate counter-balancing for order effects.
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2. Results

The measure d' is a performance measure based on the assumption that

sensory stimuli give rise to a normally distributed decision variable.

(For an elementary discussion of signal detection theory see Clarke, 1963.)

Where two stimuli differ in value on a single physical dimension, it is

assumed that each gives rise to a normally distributed random value, each

with a different mean value. The measure d' is the separation between

the means when the distributions are scaled for unit variance. In an ABX

experiment, it is assumed that the stimulation A gives rise to a random

I - I I i .......variable Xl, B to x2, and X to x 3. If x I x 3 _< x 2 - x 3 , _,,_,, _,,_

observer will respond "A"" otherwise he will respond "B". In the latter

case, the relation between proportions of correct responses and d' is

given by the following equation (Pierce, 1958).

P(c)
2 d'/V 

0.5 + 1 / e-X Y2dx . j" e-X2/2dx

r_O 0

where P(c) is the proportion of correct responses.

Using this equation to convert proportion of correct responses to

d' and plotting d' as a function of separation between the two stimula-

tors, we obtain the relationship shown in Fig. VI-7. There are 500 ob-

servations per data point. The bars through the data points indicate the

standard error of the mean. The straight line is a visual fit through

the origin, where d' must be zero if the stimulators are identical. This

line is a fairly good fit to the data with the exception of the point at

0.15 cm. Figure VI-8 shows the same data plotted with percent correct as

the dependent variable. The solid curve is that obtained when the values

of d' given by the straight line in Fig. VI-7 are converted back to percent

correct by the above equation. With the exception of the point at 0.15 cm,

the theoretical curve fits the data quite well. This point represents the

closest separation possible between the two stimulators and was obtained

as a check on whether or not the stimulators might differ in some unknown

way which the observer might detect. The location of this point suggests

that this is a possibility, though a deviation of 3 percent from chance
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performance cannot be taken too seriously on the basis of these data.

We conclude that these data are consistent with the hypothesis that d'

is linear with separation between stimulators. But, as we shall see,

the data obtained in the third experiment offer conflicting evidence.

The open circles in Fig. VI-9 show the relation between the observer's

"hit rate" and "false-alarm rate" as instructions are varied in the "same-

different" binary-choice experiment. Here, hit rate is defined as the

observer's probability of responding "different" when the stimuli were
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in fact generated by different stimulators. The false-alarm rate is

defined as the observer's probability of responding "different" when the

stimuli were generated by the same stimulators. The points are ordered '

logically, i.e., the point with the lowest hit rate and lowest false-

alarm rate was obtained when the observer was instructed to be very sure

the stimuli were generated by different stimulators before responding

"different". The middle point was obtained when he was instructed to

make his best guess, and the highest when he was to be sure the same

stimulator was responsible for both stimuli.
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The solid points in Fig. VI-9 were obtained in the "same-different"

rating experiment. For each of the three curves, the lowest point repre-

sents the probability that the observer would respond "four" when the

stimulators employed were different [P(41D)] plotted against his proba-

bility of responding "four" when the stimulators employed were the same

[P(41S)]. The next highest point on each curve represents P(4 or 3[D)

versus P(4 or 31S), and the highest is a plot of P(4 or 3 or 21D ) against

P(4 or 3 or 21S). The open circles and solid points for the middle curve

appear to define the same function, and we feel relatively safe in con-

cluding that both methods give rise to the same ROC curve. For more

information on these two methods of generating ROC curves see Egan,

Schulman, and Greenberg, "Operating Characteristics Determined by Binary

Decisions and by Ratings" in Swets, 1964.

The solid curves passing near the points are of the shape one would

obtain in a "same-different" experiment if the observer's performance was

consistent with the hypothesis that the sensory stimulation gave rise to

a normally distributed decision variable. _e There is some suggestion that

the data points break slightly more sharply than the theoretical curves,

but it is clear that a d' measure would give a much more constant measure

of the observer's ability to distinguish between the two hypotheses than

would a hit rate corrected for "guessing," as commonly employed in psycho-

physics. We feel that the theory of signal detection provides relatively

good predictions of the shape of the obtained ROC curves.

The curves of Fig. VI-9 are labeled with the values of d' which were

used to generate them. It will be noted that these values are quite dif-

ferent from those obtained in the ABX experiment. This means that the

very simple model which we had hoped to use to relate the two types of

experiments is inadequate. It would appear £hat the observer is better

able to handle the simpler decision process required in the "same-different"

_ See Sorkin, R. D., "Extension of the Theory of Signal Detectability

to Matching Procedures in Psychoacoustics" in Swets, 1964.
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experiment than he is the more complex process required in the ABX experi _

ment, or that long-term memories are involved in the decision process. It

may also be noted that the values of d' obtained in this "same-different""

experiment are not linear with the separation between the stimulators.

Consequently, we must regard the results in the ABX experiment, for the

time at least, as specific to that technique and not generalize on the

basis of those data without further study of the problem.

3. Discussion

The results of these experiments must be treated cautiously. The

experiments are purely exploratory studies with but a single experimental

subject. However, the following summary statements appear warranted:

(i) We are not in a position to conclude that d' grows as a

linear function of spatial separation between loci of

stimulation, although the results in the ABX experiment

suggest that this possibility should not be rejected

without further experimentation.

(2) We feel relatively safe in concluding that the theory

of signal detection does a fairly good job of predicting

the shape of the ROC curve. Furthermore, we feel it very

likely that both methods of obtaining ROC curves will

give essentially the same results in studies of tactual

perception. These conclusions are bolstered by knowledge

of similar findings in audition and vision.

(3) Definition of the relationship between data obtained in

the ABX experiment and the "same-different" experiment is

pending a more complex set of assumptions than we feel

justified in making at this time.

138



VII OVERALL PLANS AND DISCUSSIONS

Each section of this report contains a subsection titled "Discussion,"

treating results and their relation to the work discussed in other sec-

tions of the report. In this section we have attempted to give an over-

all view of our plans for the project and the significance of tactile

research in general.

Recent engineering interest in the potential applications of tactile

communication systems has increased the need for broad studies in tactile

perception. Potential clinical uses for the tactile tests that could

evolve from such studies, e.g., tactile tracking tests, are also of

interest. Tactile studies are, therefore, important in their own right;

however, they may be very useful for comparative purposes as well. The

development of engineering models for any one of the three major sensory

_j ...... s, _,, vision, and t=uuxon, m_y ue slgnzxlcan_ly helped by

results from studies in either of the other two. There is little ques-

tion that comparable data rates can be achieved in all three systems.

In particular, the tactile system seems to have a number of the attributes

I/

of both the visual and auditory systems. Von Bekesy, for instance, has

shown that considerable psychophysical similarities exist between audi-

tion and taction, and we have already seen how readily the familiar

visual alphabets can be perceived tactually.

Some interesting psychophysical experiments have led to speculation

on a short-term visual memory of 0.25 to 1.0 seconds that may be impor-

tant in "chunking" the continuous stream of visual input (see Massa, 1964).

Techniques for erasing this short-term memory and interfering with its

readout have been demonstrated. One is led to wonder whether there is

an analogous short-term tactile memory. If so, how do its properties

compare with those of vision? Is there an erase function? It is inter-

esting that the saccadic eye-movement rate falls in the same range as

that of the short-term visual memory (Gaardner, et al., 1964). If

saccadic movements are important in the operation of the visual short-

term memory, is there a tactile equivalent of saccadic movement? It may
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well be that tactile experiments on short-term memory might help clarify"

the modeling even of the visual system.

In taction there are the familiar "modes" or descriptive terms of

hot, cold, touch, pressure, itch, tickle, pain, smooth, rough, and so on.

As discussed in the introduction to this report, there is considerable

controversy over the nature of the tactile receptor endings, in partic-

ular the number of different types. There may be an interesting parallel

here to color vision, for which we imagine three relatively distinct

types of receptors that together provide a great range of color percep-

tion. Land (1964) in his "retinex theory" has provided an interesting

model to describe the manner in which the outputs from these three

retinal "sheets" may be combined to explain a number of the facts of

color perception. Are there a number of basic tactile "sheets" that

similarly combine to provide the wide range of tactile perception? Are

there elements of a common model for color vision and taction?

We tend to consider the visual and auditory systems as relatively

independent; however, there can be important interactions. Shipley (1964),

for example, reports that when visual flashes and auditory clicks are

presented simultaneously, the reported visual flash rate can be drastically

affected, and in fact driven, by simultaneous auditory clicks, which occur

at a different frequency. However, the perceived auditory click rate is

substantially unaffected by the simultaneous visual flashes. This experi-

ment shows an interesting asymmetric relation between these two systems.

Expanded experiments involving simultaneous tactile "clicks" might be

helpful in determining the interrelationship of these systems.

The work discussed in this report, plus future work, can be organized

according to the pattern shown in Fig. VII-I. There are four main "out-

puts" from this type of program: (1) models, as they develop; (2) results

of individual quantitative studies; (3) results of data transmission

experiments, like those of the tactile-tracking and tactile-language

studies; and (4) results from neurophysiological studies.

The study of data transmission techniques may lead to the develop-

ment of useful engineering systems for display and control purposes or

for helping sensorily handicapped individuals. These studies will also
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lead to the formulation of quantitative psychophysical experiments (e.g.,

the pattern vibration experiments discussed in Section VI), the results

of which can be important in the system design. The results of quanti-

tative and neurophysiological studies and the data from models as they

evolve will not only be interesting in their own right but, as discussed

above, will be important for comparative purposes as well. The facility

for flexible control of complex temporal-spatial stimuli should signif-

icantly affect the nature of physiological studies as it affects visual

perception studies (see Hubel and Weisel, 1962).

It has often been demonstrated that qualitative, subjective,

phenomenological studies by themselves can be dangerous and misleading.

For this reason we do not consider them as direct program "outputs,"

although the material of Section V is of this nature. However, as dis-

cussed in the introduction, the performance of a large number of rela-

tively brief experiments, not even necessarily well controlled, seem

important for guiding the selection of the necessarily small number of

quantitative studies that can be performed. We expect there will be
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considerably more experiments of this type, especially as we enlarge the

physical range of our stimulation. Thus far, the total stimulus pattern

has been limited to a rectangle of a couple of inches on a side. Study

of the transmission capability of our entire tactual sheet of a dozen or

so square feet will require stimulation over more extensive areas.

We tend to think of the retina as a relatively uniform screen, with

a central foveal region of greater resolution, to be sure, but otherwise

relatively uniform. In particular, we do not think of specialized points

on the retina as special landmarks. Tactually, however, we have learned

a great many specialized anatomical positions that we can point to ac-

curately with little difficulty, even with our eyes closed. _at effect

do these landmarks have on coding possibilities? Consider a visual ex-

periment in which a single spot of light is flashed tachistoscopically,

and the subject is simply asked to record its two-dimensional position.

This is an experiment involving two physical dimensions (an _ and a

coordinate), and it is typically found that about 4.4 bits per presenta-

tion is achieved (Attneave, 1959, page 72), which is equivalent to an

absolute definition of 24.4 _ 20 two-dimensional locations. Tactually,

however, we can do considerably better. We can readily identify several

dozen tactile locations with substantially 100-percent accuracy. We

have conducted preliminary experiments with a "typewriter" code, in

which a typewriter keyboard is coded onto the array of ten fingers with

three rows of stimulators, one for each of the three regions between the

joints of each finger, and with two positions for each such region of

the index fingers, defining 30 positions all told. These experiments

have demonstrated that 100-percent correct identification can be achieved

at slow rates. In the development of tactile codes, this achievement leads

to the question, how important is anatomical position relative to spatial

relationship? In other words, we know we can transmit language via a

code involving complex letter shapes, say, in the form of English letters,

in which the structure of the letter is the important factor and the

absolute anatomical position is immaterial, as long as the stimulus

location has adequate resolution. On the other hand, we also know

that we can devise codes in which each letter is specified by unstruc-

tured stimulation of a unique anatomical position. Is there an optimum
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mix of relative shape and absolute position for highest data rates? We

might consider the effective dimensionality of our two-dimensional fac-

tual skin surface, including the effects of learned anatomical position.

Attneave (1959, page 74) reports an average increase of 1.7 bits per

presentation for each doubling of dimensionality. Thus, for example,

for a four-dimensional experiment we could expect 24.4 + 1.7 _ 60 abso-

lute identifications.

In a different vein, there are also important questions regarding

the interaction of material simultaneously presented at different spatial

locations. Can we effectively pay attention to just one at a time? Is

there a tactile "cocktail party" effect?

We see then that there are many interesting questions to ask. With

a number of relatively brief phenomenological experiments we hope to be

able to identify a relatively small number of quantitative experiments

to perform. These, it seems, will provide important data for developing

overall models, i.e., an understanding of tactile performance.

Apart from direct transmission, there are other interesting studies

to pursue. For example, we noted the sensation of three-dimensional

apparent motion effects in connection with Fig. V-6. Though these

effects were achieved only over relatively small physical distances, we

might inquire whether the same effects can also be achieved over wider

areas of the body. In fact, most of the phenomenological experiments

of Section V, which were performed, so to speak, "in the small," in the

sense of stimulation over a small area, can be extended to larger areas.

Apart from data transmission capability, it may well be that the tactual

system has sensory function unmatched by, or at least different from,

the auditory and visual systems, which may indeed make the "feelies"

of Mead (1954) a reality.
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Appendix A*
AIRJET ARRAY 1

The first version of an electromagnetic valve suitable for construc-

tion in a relatively large array is shown in Fig. A-1. The air pressure

in the box acts as a return force, together with the metal spring, to seal

the valve. When the coil is energized, the iron slug is pulled into the

gap, thereby opening the valve. Because of the low inertia of the slug,

and the short stroke, these "'va_v_l.... can operate at frequencies up to

200 cps. A simple and inexpensive relaxation oscillator circuit built

to drive this valve in the desired frequency range is shown in Fig. A-2.

For a 2-psi air pressure pulse measured 1/8 inch directly above the

airjet outlet, the pressure waveform has a rise and fall time of about

a millisecond and a width of about 3 milliseconds. The pressure waveform

is shown in Fig. A-3. For an oscillation frequency of 80 cps, therefore,

air flows only about 25 percent of the time. Subjects report that the

sensation with this duty cycle is actually more localized than with a

50-percent duty cycle. If the region of skin being stimulated is examined

under stroboscopic light, traveling waves can be seen at least an inch

away from the stimulation point. However these waves are not sensed as

such. [Similar results have been reported by yon Bekesy (1955, 1958).]

In the 12-by-8 array, the stimulators are 5/8 inch on centers so

that the total area occupied by the 96 stimulators is 6-7/8 by 4-3/8 inches.

All of the electromagnetic valves are inside a pressurized box.

Figure A-4 shows the interior and Fig. A-5 shows the exterior of

the tactile stimulator array. Small tubing is used to bring the airjets

up to a top plate, where a variety of interjet spacings can be obtained.

The height of the tubes above the plate can be adjusted to accommodate

different body curvatures. Other arrangements are possible also. For

example, the matrix can be split into two and each half placed near oppo-

site sides of a body member such as the hand.

* The work reported in this appendix was supported under Contract NAS 2-1679.
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ELECTROMAGNETIC 
-AIR VALVE COIL 

R4-646.54 I - 32 

FIG. A-2 RELAXATION OSCilLATOR C!RCUIT 
FOR THE ELECTROMAGNETIC AIR VALVE 

FIG. A-3 AIR PRESSURE MEASURED 
1/8 INCH ABOVE AIRJET 
STIMULATOR 1' (2.5 msec/cm) 



FIG. A-4 INTERIOR OF TACTILE DISPLAY CONSISTING OF 96 AIRJET STIMULATORS 

FIG. A-5 TACTILE DISPLAY UNIT 
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Appendix B_e

AIRJET ARRAY 2

The valve operation of the first model airjet stimulator was mar-

ginal from the standpoint of complete cut-off of air flow when the valve

was closed. It was felt that a better design could be made by using

steel balls sliding in closely fitting holes. A first version of this

jet design, which needed further improvement, is shown in Fig. B-I. In

the position shown, the supply pressure is applied to both balls, and

the space between them as well as the output port is exhausted to the

atmosphere. There is a net force to the left, due to the different

cross-sectional areas of the balls, which holds the valve closed. _en

the coil is energized, the larger ball is pulled to the right-hand end

of its passage, allowing the smaller ball to move away from the supply

port and across tile output port. The air supply is thus led to the

output, and the exhaust path is sealed off.
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FIG. B-I AIR JET TACTILE STIMULATOR

The work reportedin this appendix was supported under Contract NAS 2-1679.
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An approximate a n a l y s i s  showed t h a t  t h e  va lve -c los ing  f o r c e  of 

0 . 4  newtons from 10-psi  a i r  p r e s s u r e  cou ld  be overcome w i t h  t h e  e x i s t i n g  

o s c i l l a t o r  c i r c u i t  and a c o i l  of 1000 t u r n s  of N o .  37 w i r e .  An e x p e r i -  

mental model showed, however, t h a t  t h e  magnetic c i r c u i t  d i d  no t  a l l o w  

s u f f i c i e n t  f o r c e  t o  a c t u a t e  t h e  v a l v e  when t h e  c i r c u i t  w a s  d r i v e n  w i t h  

t h e  e x i s t i n g  o s c i l l a t o r  c i r c u i t ,  p r i m a r i l y  because of eddy c u r r e n t s .  

Seve ra l  mod i f i ca t ions  were then  made. The most s i g n i f i c a n t  w a s  t h e  

u s e  of a s i n g l e  b a l l ,  which reduces  t h e  mass of moving eletnents and s i m -  

p l i f i e s  c o n s t r u c t i o n ,  T h i s ,  and a minor improvement i n  t h e  magnetic 

c i r c u i t ,  produced a va lve  des ign  t h a t  o p e r a t e s  from the  e x i s t i n g  o s c i l -  

l a t o r  c i r c u i t  and produces p u l s e s  up t o  3 p s i  i n  ampl i tude  from a 5-psi  

supply p r e s s u r e ,  The p r e s s u r e  waveform i s  shown i n  F i g .  B-2. A group 

of e i g h t  of t h e s e  va lves  i n  a s t r i p  a r r ay  with i n t e g r a l  a i r  passages  and 

c o i l s  i s  shown i n  F i g s .  B-3 and - 4 .  Twelve such s t r i p s  were b u i l t  t o  

form an 8-by-12 a r r ay ,  which h a s  ope ra t ed  very s u c c e s s f u l l y .  

TIME - 
TA-4656-  26 

10 msec 

FIG. 8-2 OUTPUT AIR PRESSURE PULSES FOR AIRJET STIMULATOR 2 



. 

1 

R A- 4719- 43 

FIG. 8-3 EXPLODED VIEW OF ONE ROW OF AIRJET MATRIX 



FIG. 8-4 1-BY-8 AIRJET STIMULATOR ARRAY 
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Appendix C

B IMORPH ARRAY

A 12-by-8 piezoelectric bimorph array, Fig. C-l, built by Stanford

University has been loaned to us for evaluation and comparison with the

airjet array. In this array, the 96-1ead zirconate bimorphs are canti-

levered at 45 degrees from the base so that they vibrate like a reed.

Rounded tips of 25-mil-diameter drill rods are attached with epoxy cement

to the free ends of the bimorphs along a vertical axis, as suggested in

Fig. C-2. The free tips are positioned so that they are flush with the

top of the array of perforated holes in the horizontal plate. When the

bimorphs are activated, the tips protrude through the perforations in

the plate.

The bimorphs used are manufactured by the Clevite Corporation under

the trade name PZT Bimorph. They are 1-1/2 inches long, 1/16 inch wide,

and 24 mils thick. Each consists of a metallic center vane, on both

sides of which oppositely polarized lead zirconate strips are attached.

Outer surfaces, which are parallel to the center vane, are silver coated.

The center vane is one electrode and the two outer surfaces, which are

electrically connected to the mounting, are the second electrode. When

a voltage is applied across the electrodes, the bimorph flexes by an

amount proportional to the voltage and in a direction depending upon the

polarity of the voltage. The tips of the bimorphs used deflect about

0.04 mils per volt.

Interface circuitry has been built so that this array can be operated

from the same drive circuitry as the airjet array.
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FIG. C-1 12-BY-8 BIMORPH ,STIMULATOR ARRAY 
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FIG. C-2 PHYSICAL ARRANGEMENT OF 
A BIMORPH STIMULATOR 
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Appendix D_e

DIGITAL-COMPUTER-CONTROLLED SYSTEM

i. General

Figure D-I is a block diagram of the system that has been developed

and assembled. The CDC 160-A computer is used in real time to store the

stimulus patterns, scan them according to various temporal modes, output

the scanned stimulus patterns, record and tabulate the subject's responses,

and analyze the data. The timing for the stimulus presentation is con-

trolled by an external clock. The control logic interfaces between the

computer and a 12-by-8 storage matrix. The data in the storage matrix

activates the tactile stimulators via the driver circuitry. An 8-by-12

light display is slaved to the tactual array. Each of these blocks is

described below.

FIG. D-I

I CLOCK J
I

HCDC I6OA CONTROL _1_ AND
v J J OUTPUT

SUBJECTSREsPONSECOMPUTER LOGIC J l

I
t

STI MULATORREMOTE

LIGHT O SPLAYJ MATRIX

RA-646,54t -33

BLOCK DIAGRAM OF DIGITAL-COMPUTER-CONTROLLED SYSTEM

2. Computer

The CDC 160-A computer is a parallel, single-address electronic

data processor. Operation is controlled by an internally stored program

located in sequential addresses. The computer memory consists of two

units (or banks) of magnetic core storage, each with a capacity of

The work reported in this appendix was supported under Contract

AF 33(615)-1099.
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4096 12-bit binary words and a storage cycle time o£ 6.4 microseconds.

Instructions are executed in one to four storage cycles; the time
$

varies between 6.4 and 25.6 microseconds. The average program execution

time for 130 instructions is approximately 15 microseconds per instruction.

3. Control Logic

The stimulator matrix is 12 columns wide to match the CDC 160-A

computer, which has twelve output data channels. The control logic cir-

cuitry has been built to switch the twelve computer lines through the

eight rows of the airjet stimulators. This section is shown schematically

in Fig. D-2.

T _ DRIVER } READYFUNCTION CL(

SET

S

MONOSTABLE

MULTIVIBRATOR

INFORMATION I /

READY _1 DRIVER I

OUTPUT I x2 I_
RESOME l GA'NF
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TO SCR

DRIVERS
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FLIP)OUTPUTFLOP

k RESET

l MONOSTABLE __• MULTIVIBRATOR

1

t_ 2 ,---,Imp|8 LINES TO SCR

R-._-- _ 3 _ MATRIX AND LINE

_r._ 4 9 STAGE _/ RESET SWITCH

I t--1 S SHIFT _/I e-POLE I

I .t-'16 REG,STER_ me.POSIT,ON
I -t--'l _ _/I SWITCHI
I _'1 e _J " I

F L j
DRIVER FRA LINE

RA-646,541-34

FIG. D-2 CONTROL LOGIC
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A sequence of operations is as follows: When the computer is ready

to display a tactile pattern, it puts a signal on Lines A, B, and C. A

function-ready signal is then put on Line T. The coincidence of these

signals sets control flip-flop Q . The output of this flip-flop,four

together with the clock signal, starts the shift register stepping through

its nine steps.

The computer, 12.8 microseconds later, replaces the signals on

Lines A, B, and C with a set of twelve binary signals on Data Lines A-L,

which represents the first row of the output pattern. With the first

ensuing clock pulse, an output-resume signal, S, is sent to the computer.

This causes the computer to return an information-ready signal, R,

assuming the Lines A-L have been properly set. Signal R opens gates on

each of Channels A-L. These twelve signals, gated by the output of the

first stage of the shift register, then energize the first row of twelve

storage elements according to the l's and O's on the twelve computer data

lines. The next clock pulse steps the shift register one position and

sends an output-resume pulse to the computer.

The computer removes its information-ready signal, sets up a new

data pattern on the twelve output lines, and then replaces its

information-ready signal. This new data word is gated into the second

row of the array storage. When no further data are to be displayed,

the computer does not return an information-ready signal. The NOR gate

Q with neither S nor R present,resets flip-flop i_ and, via driver

Q , resets the shift register. The system is now ready to restart

on resumption of a function-ready signal and signals on Lines A, B,

and C.

There is considerable flexibility in the manner in which a pattern

can be scanned and reset. Different scan modes can be used by proper

subroutine choice in the computer. Additional control is effected by

manual switches in the control-logic section. There are three modes in

which the control logic can be operated. In the first, called the frame-

reset mode, selected stimulators are turned on a row at a time, until all

eight rows have been energized. Then the entire frame is reset at once.

A second, or line-reset mode turns on a row of the matrix and at the same
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time resets one of the rows 2 to 8 behind, depending on the switch set-

ting. Thus, at each clock step, one row is turned on and one row is

turned off. In the third, or frame-presentation, mode the pattern from

the computer is stored in the SCR matrix, and then the entire array of

stimulators is activated simultaneously for a predetermined interval.

4. Storage and Output Circuitry

The storage section is activated by two sets of input (one from the

twelve-line computer output and the second from the eight-line shift

register output) that form an 8-by-12 matrix. Whenever the cross lines

at any intersection point of the array are simultaneously excited a

silicon-controlled rectifier (SCR) fires and remains energized. For

example, whenever Stage 4 of the shift register and Line C of the com-

puter output lines are both logic l, the stimulator in position (4,3) in

the 8-by-12 matrix is energized. The circuitry that fires the SCR is a

transformer AND gate tailored to the two sets of input signals as shown

in Fig. D-3. The reset circuitry is a transistor switch that controls

the 90-volt stimulator supply. For as long as the SCR is fired, the

corresponding relaxation oscillator circuit is energized and drives the

airier stimulator.

The state of each SCR is displayed on a 12-by-8 neon array. Each

of these neons has an associated push button that can manually activate

the relevant unit. This feature enables checkout of the system and

presentation of special patterns.

5. Synchronized Output Circuitry

As described thus far, all of the 96 oscillators in the output are

unsynchronized. The system was originally built this way so that the

frequency of each airjet could be different and frequency could be used

as an information-bearing dimension. A difficulty with this system,

though, is in making experiments on the effect of general change in fre-

quency or duty cycle. For this purpose it is far easier to have all out-

put circuits driven from a single oscillator whose frequency and duty

cycle are easily controlled. The original system has thus been augmented
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FIG. D-3 DRIVE CIRCUITRY FOR AIR VIBRATORS--SINGLE ELEMENT

as shown in Fig. D-4 to incorporate an output display synchronously

driven in this manner, although there still remains the facility to use

the original type of display. (Only the Model 2 airjet system can be

used in the synchronous mode, however, since it is necessary to have

both ends of the drive coil electrically free, whereas in the first

airjet construction, the array was constructed with one terminal of all

jets in common.)

6. Subject Controls

Two controls have been added that have proven to be very useful for

training and experimentation. One is a start-stop switch that allows

the subject to stop and start the moving patterns. When this switch is

in the stop position, a computer interrupt line is open-circuited so

that the computer does not receive the pulse from the external equipment
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FIG. D-4 SYNCHRONOUS AtRJET STIMULATION SYSTEM

(a) Block Diagram

(b) Circuitry for Single Airjet

which signals it to continue the program. Also, when the switch is in

the stop position, a battery is connected across an inductor. When the

switch is thrown to the start position, the inductor is connected to the

interrupt line, thereby generating a pulse that starts the program again.

The second control allows the subject to backspace a fixed number

of patterns. This control operates by putting a pulse on a second com-

puter interrupt line. When the computer receives this pulse, it sub-

tracts five (for example) from the memory location stored in PTITL and

returns to the program. Thus, the next pattern received by the subject

is the fifth previous pattern, and the intervening pattern will be

repeated.
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7. Operation

In operation of this system two modes of timing have been used. In

the first, shown in Fig. D-5, the computer is idle while the stimulus

pattern is being displayed and the rate of stimulus presentation is

controlled external to the computer. In the second mode, shown in

Fig. D-6, the computer is performing the instructions specified by the

stored program while the stimulus pattern is being displayed and the

rate of stimulus presentation is controlled by the computer. Note that

in the first timing mode there is a dead time equal to the length of

time it takes the computer to execute the program. This mode is used

when the dead time is not important for the particular experiment. For

example, for the letter recognition experiments with the jittered array,

external timing was important for self pacing so that the first mode was

used. However, in the sessions on reading textual material, the dead

time became appreciable around 30 wpm and the second mode was used.
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Appendix E_

COMPUTER PROGRAMS

Several programs have been developed for the CDC 160-A or CDC 160

computers for carrying out psychological experiments. These programs

are described below.

1. Pattern Loader Program

The two-dimensional patterns that are to be displayed to the tac-

tual sense are written in a format of a title followed by eight 4-digit

octal numbers. These octal numbers specify which stimulators are acti-

vated (a 1 in the 12-digit binary number means that the stimulator cor-

responding to this 1 will be energized). For example, the pattern for

activation of the matrix border is

BORD

7777

4001

4001

4001

4001

4001

4001

7777

TITLE

data

The Pattern Loader Program takes the punched paper tape produced

by typing the above format on the off-line Flexowriter, converts the

data portion to binary, and stores the title and data in core locations

starting at i000. This routine also disregards blank tape, deletes,

and carriage returns.

_ The work reported in this appendix was supported by Contract

AF 33(615)-1099.
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2. Experiment Performance Program

This program has two modes of operation--a data input mode and a

data output mode. In the input mode the program reads in, from either

the paper tape reader or the typewriter t the sequence of patterns to be

displayed. These pattern titles are stored until the memory is filled

up and then the read-in operation is stopped. In the output mode this

program takes each stored pattern title in turn_ locates the pattern

corresponding to the title, and then transfers control to one of the

pattern scan programs.

3. Point Scan Program

When this program is used, the interface equipment is set so that

each row of the stimulator matrix is reset before the new row is acti-

vated, one after the other:

(12,1), (12,2), (12,3), (12,4), (12,5), (12,6), (12,7), (12,8), (ii,i),

(ii,2), ..., (1,8). After each point the matrix is reset; after 96 points,

control is transferred to the Experiment Performance Program.

4. Line Scan Program

This program displays the pattern one row at a time from top to

bottom. The interface equipment can be set so that three modes are

possible with this program. In the first, called the frame-reset mode,

selected stimulators are turned on a row at a time, until all eight rows

have been energized. Then the entire frame is reset at once. A second,

or line-reset mode turns on a row of the matrix and at the same time re-

sets one of the rows 2 to 8 behind, depending on the switch setting.

Thus, at each clock step, one row is turned on and one row is turned

off. In the third, or frame presentation, mode the pattern from the

computer is stored in the SCR matrix, and then the entire array of stimu-

lators is activated simultaneously for a predetermined interval.

5. "Times Square" Pattern Scan Program I

This program moves a pattern across a 12-by-8 matrix from right

to left in much the same manner as certain news display boards (e.g., as
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in Times Square, New York City). Figure E-I is a flow diagram for a

part of this program. As shown, each line of the pattern is masked out

except for the part to be displayed, then this line is shifted left

(the left shift is an end-around shift) to the proper position. After

all 8 lines o£ the pattern have been so shifted, the overall pattern

has effectively been shifted by one column and the new shifted field is

read out on the tactile stimulators.

SELECTNEXT m-_
PATTERNTITLE

FROMPTITL
ANDSEARCH

FORPATTERN J I

LOADNEXTLINE
OF THE PATTERN e oou T,, STO  "iWITHTHE MASK _TO THE POSiTiON THE NEXTLINE

DETERMINEDBY J -I DETERM;NEDBY OE THE

................. DiSPLAYFiELD Ij i,._ M_b_,_utxJ [THE SHIFTiNDEX

AUGMENT NO
fNOEXES ¢

NO i RESET INDEXESj

YES /THE PATTERN_ OUTPUTTHE
_ _ BEENSHIFTED/_ 41 I 8 LINESFROM

RB-4719-IB

FIG. E-1 FLOW DIAGRAM FOR "TIMES SQUARE" COMPUTER PROGRAM

For the first frame presentation, all of the pattern except the

left-most column is masked out and this column is shifted left once,

with the result that it appears in the right-most column position of

the display (since the left shift is an end-around shift). For the next

frame presentation all but the two left-most columns are masked out and

left-shifted twice so that they appear in the two right-most columns of

the matrix. Since the matrix is 12 elements wide, it takes 24 single

shifts to display a 12-column pattern in all possible positions. After

24 shifts the next pattern is selected and the process is repeated.

179



If letters are specified on a 5-by-8 matrix, two complete letters

can be displayed simultaneously on the 12-by-8 array, with two empty

columns between them. As a series of letters with this 7-column spacing

is moved from right to left across the matrix, parts of three letters

can be displayed at any one time. A display of this kind is very useful

for studying information transmission with closely spaced letters, or

any symbol set.

The flow diagram for the complete program is shown in Fig. E-2.

As shown, three "Times Square" subroutines are used to operate on the

three patterns that are in motion at any one time. Following through a

sequence of operations, the first pattern is stored in "Times Square"

Subroutine 2 and the first two patterns are shifted and read out 7 times.

Next, the third pattern is stored in "Times Square" Subroutine 3 and all

three patterns are shifted until the first pattern disappears off the

left edge of the display. The process is repeated with the 4th, 5th,

and 6th patterns.

SELECTNEXTPATTERN
TITLEFROMPTITL

ANDSEARCHFORTHE
CORRESPONDINGPATTERN

STORETHELOCATIONOF
THENEXTPATTERNIN

"TIMESSQUARE"SUBROUTINE
I,2,OR5 DEPENDINGON

INDEX

AUGMENTINDEX
_/tF IT IS1 OR2,
" RESETINDEXTO

1 F T S 3

NO

I

'r ,ooco.Es,,oNo.NolI
FRO,,O,S,',.,,II "T,,,ESSOUA,,E'

OUTPUTFROM ANDSTOREIN I I(WITHOUTOUTPUT
DISPLAYFIELD4 OISPLAYFIELD4 [ I COMMAND}

I

SUBROUTINE2 _ SUBROUTINE3
[" JIWlTHOUTOUTPUTI- J(wITHOUTOUTPUT

1 1 COMMAND) I 1 COMMAND)
RB-4719-19

FIG. E-2 FLOW DIAGRAM FOR A "TIMES SQUARE" DISPLAY

OF CLOSELY SPACED 7-BY-8 PATTERNS
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6. "Times Square" Pattern Scan Program II

This program is similar to the Times Square Program I except that

the patterns are moved across the 12-by-8 matrix from up to down instead

of from right to left. The speed of the pattern movement is controlled

by the computer instead of by the interface equipment. Since the pattern

movement is in the same direction as the computer steps through its

memory words, this program can operate at least twice as fast as "Times

Square" Program I. Also, for alphabetic patterns, the stimulation arrays

can be turned 90 ° to give the same right-to-left presentation as is

possible with Times Square I.

7. Response-Recording Program

This routine records the subject's response (entered via a type-

writer), compares it to the stimulus, and augments the proper location

in the confusion matrix.*

8. Operation

These programs can be used together to perform a particular experi-

ment. Figure E-3 illustrates how the Experiment Performance, Point

Scan, Line Scan, and Subject Response Programs were combined to perform

an experiment.

* Attneave (1959) is a convenient reference for confusion matrix repre-

sentation and information analysis.
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Appendix F

TRACKING SYSTEM 1
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Appendix _

TRACKING SYSTEM 1

i. Compensatory Tracking

The system of Fig. F-I has been de_eloped, allowing us to use the

12-by-8 stimulus array, together with its associated circuitry, to per-

form two-dimensional compensatory tracking experiments. Since a square

array of stimulators is appropriate_ and since the center of the array

was chosen as zero error (implying an odd number of stimulators), the

tracking display actually uses only a 7-by-7 portion of the 12-by-8

array of stimulators.

An appropriate command signal, consisting of x and y coordinates,

is generated by several operational amplifiers in the Donner analog com-

puter. The subject of the experiment attempts to follow the command

signal by manually operating an x-y control stick. The difference be-

tween the command signal and the signal from the x-y control stick is

presented to the subject via a 7-by-7 airjet matrix.

The analog computer takes the difference between the command signal

and the signal from the control stick for both the x and y components.

The x error signal and the y error signal are sent to a parallel group

of amplitude gates and time-sampling gates. The amplitude gates classify

the x error signal and the y error signal into one of seven appropriate

levels.corresponding to the 7-by-7 airjet matrix. The sampling-rate

multivibrator is set to operate at approximately five samples per second.

It drives the sampling gate multivibrator which in turn operates the

time-sampling gates. The time-sampling gates are attached to the output

of each of the amplitude gates. Thus, the output of the x and y ampli-

tude gates are sampled five times per second_ and this x and y informa-

tion is used to turn on the appropriate airjet in the matrix corresponding

_ The work reported in this appendix was supported under Contract NAS 2-1679.
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FIG. F-1 BLOCK DIAGRAM OF CIRCUITRY FOR TRACKING EXPERIMENT
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to the x and y value of the error signal at that time. The sampling

rate multivibrator also triggers a delay multivibrator that is set for

approximately i00 milliseconds. At the end of the lO0-msec delay, this

multivibrator then pulses the center airjet in the matrix.

Thus, the magnitude and direction of the vector representing the

error signal are coded into the sequential pulsing of the two airjets--

one, the airier whose location is determined by the x and y value of

the error signal; and two, a reference airjet located in the center of

the matrix. Thus, the error vector, whose magnitude and direction can

...... s_ as an apparent-motion line, points in the direction in which

the subject should move the control stick in order to reduce the error

to a minimum. Since the airjets are operated by silicon controlled rec-

tifiers, they require a reset pulse after each firing. A delay multi-

vibrator and driver also driven by the sampling-rate multivibrator

provides this function.

Most of this circuitry is standard and is therefore not shown in

detail. However, the amplitude gate circuitry may be of some interest

since the amplitude gates and time-sampling gate circuitry are integrated

into one circuit. Figure F-2 shows the detailed circuitry for the three

gate levels and the time-sampling gates for the +x section. The +y

section is identical to this, and the -x and -y circuits are identical

except that all voltages are inverted, diode orientation is reversed,

and the transistors are counterparts (pnp is substituted for npn and

vice versa). Not shown on the schematic is the necessary pulse-inverting

circuit for the negative counterparts (required to provide a standard

pulse polarity to drive the SCR circuitry associated with the airjet

matrix).

2. Pursuit Tracking

To permit pursuit tracking experiments, switching gates are inserted

into the input lines to the x and y drivers. The function of these gates

is to permit the inputs to the amplitude-quantizing gates to be alter-

nately switched between two sources. In synchronism with switching

between the two input sources (presently at a 5-cps rate), the frequency
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at which the selected airjet is pulsated is alternated between two

selected values (presently 30 cps and 90 cps). This frequency difference

allows the subject to determine which of the two inputs is being dis-

played. Thus two stimulators are alternately energized on the airjet

matrix. Their position in the matrix indicates the (x,y) values of the

two pairs of input signals and the airjet pulsation frequency indicates

which pair is being displayed. The airjet in the center of the matrix

(i.e., reference) is no longer driven from a special circuit but is

driven as a normal part of the matrix.

With this modification compensatory tracking is achieved singly by

connecting one pair of input signals of the switching gate to the error

signal and the other pair to fixed dc values. For pursuit tracking one

input pair is connected to the response signal. Thus, the airier matrix

can display both the desired position and the actual position.
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Appendix G _

TRACKING SYSTEM 2

The good results from tracking experiments with high display gain

led us to consider a relatively simple two-dimensional tracking display

consisting simply of a single ring of twelve stimulators, with a single

reference stimulator in the center. To adapt the x,y error data from

the analog computer for this display the special circuitry of Fig. G-I

was built. If an error vector lies anywhere within a particular radial

sector, and the error is larger than a given magnitude, then the single

stimulator corresponding to this radial zone is activated. Twelve

30-degree-wide zones are defined by six lines through the origin. To

determine just which of the twelve zones an error lies in, the dot

product is formed between the error vector and each of the six lines

that pass through the origin. Each line can simply be defined by a

single slope or angle.) Each dot product consists then of multiplying

the error coordinates (x,y) by a proper sine and cosine. This is the

significance of the three weighting numbers, a, b, and c, beside each

input to the column of operation amplifiers. (The seventh amplifier is

simply to obtain a negative version of the first amplifier.) The three

values a, b, and c, are input resistance values, corresponding to inverse

sines, respectively of 15, 45, and 75 degrees, multiplied by 100K. Each

operational amplifier has a feedback resistor R = 10OK. Thus the equa-

tion for the first amplifier is simply

or

E

out _ x + _y
R a b

Eou t = x sin @ + y cos @ , for @ = 15 degrees

_ The work reported in this appendix was supported under Contract

NAS 2-1679.
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L Each a m p l i f i e r  con ta ins  a p o s i t i v e  and nega t ive  l i m i t e r ,  so t h e  output  

from each a m p l i f i e r  i s  either a l a r g e  p o s i t i v e  or a l a r g e  nega t ive  value,  

depending on  whether t h e  p r o j e c t i o n  of t h e  e r r o r  vec to r  on t h e  p a r t i c u l a r  

r a d i a l  i s  p o s i t i v e  or negat ive .  The  funct ion of  t h e  second column of 

l o g i c  elements i s  t o  determine i n  which zone t h e  p r o j e c t i o n  p o l a r i t y  

changes. There w i l l  be  t w o  such zones but t h e  p o l a r i t y  of t h e  change i s  

always d i f f e r e n t  for t h e  two zones. The l o g i c  c i r c u i t r y  detects both t h e  

presence and t h e  magnitude of t h e  change, and t h u s  one unique zone i s  

determined for each inpu t  sector- the se lec ted  zone i s  geometr ica l ly  

90 degrees  d i sp l aced  from t h e  error sec tor ,  but  neve r the l e s s  t he  ass ign-  

ment i s  unique. Figure G-2 i l l u s t r a t e s  t he  input  s i g n a l  zones t h a t  pro- 

duce s e p a r a t e  t a c t i l e  ou tpu t s .  

The  lower c i r c u i t r y  i n  t h e  f i g u r e  is used t o  c o n t r o l  whether exci- 

t a t i o n  is on t h e  r ing ,  f o r  e r r o r  l a r g e r  t han  a c e r t a i n  magnitude, or 

whether t h e  c e n t e r  s t i m u l a t o r  i s  exc i te6  for smal le r  error. 

T h i s  c i r c u i t r y  i s  e a s i l y  converted--by simply s h i f t i n g  about a h a l f  

dozen wires--to a one-dimensional l i n e a r  d i s p l a y  conta in ing  13 stimu- 
l a t o r s ,  one c e n t e r  s t i m u l a t o r  and s i x  on e i t h e r  side.  The arrangement 

for one-dimensional d i sp l ay  i s  shown i n  F ig .  G-3. I n  t h i s  c a s e  t h e  

inpu t  e r r o r  s i g n a l  (3) i s  simply p lus  or minus. A second set of  i npu t  

l i n e s  connect t o  the ope ra t iona l  

a m p l i f i e r s .  T h e  i npu t  r e s i s t o r s  

from t h e  right-hand l i n e  a r e  a l l  

equal .  The inpu t  r e s i s t o r s  from 

t h e  lef t -hand l i n e  i n c r e a s e  pro- 

g r e s s i v e l y  from s t a g e  t o  s t age .  

The  right-hand l i n e  i s  clamped 

t o  a p l u s  or minus vol tage  de- 

pending on t h e  p o l a r i t y  o f  e r r o r .  

For any given magnitude of er ror ,  

the  le f t -hand  inpu t s  of  some of 

FIG. G-2 ZONES ILLUSTRATING THE 
t h e  o p e r a t i o n a l  ampl i f i e r s  w i l l  

su rpass  t h e  clamp ( re ference)  OPERATION OF THE TWO- 

vo l t age  of t h e  right-hand l i n e ,  
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and somewill not. As the magnitude of error changes, the position of

the polarity transition will shift. The transition position is monitored

by the second column of amplifiers, as in the radial mode of operation.

For small error the outputs from the twelve stimulators are gated off

and the center stimulator is energized.
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